基于细胞神经网络的渐进式图像重建

S. Itakura, Y. Tanji, T. Otake, Mamoru Tanaka
{"title":"基于细胞神经网络的渐进式图像重建","authors":"S. Itakura, Y. Tanji, T. Otake, Mamoru Tanaka","doi":"10.1109/ISCAS.2002.1009820","DOIUrl":null,"url":null,"abstract":"The progressive image reconstruction via CNN is presented, where the CNN template mapping an image to a domain concerned with the coefficients of the radial basis function network for image interpolation is provided. The analog CNN dynamics achieves massively parallel computing, thus, the proposed procedure would create a new paradigm of CNN at the point of very high-speed image decoding and encoding. The simulation results shows good performance of the proposed CNN for image reconstruction.","PeriodicalId":203750,"journal":{"name":"2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Progressive image reconstruction via cellular neural networks\",\"authors\":\"S. Itakura, Y. Tanji, T. Otake, Mamoru Tanaka\",\"doi\":\"10.1109/ISCAS.2002.1009820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The progressive image reconstruction via CNN is presented, where the CNN template mapping an image to a domain concerned with the coefficients of the radial basis function network for image interpolation is provided. The analog CNN dynamics achieves massively parallel computing, thus, the proposed procedure would create a new paradigm of CNN at the point of very high-speed image decoding and encoding. The simulation results shows good performance of the proposed CNN for image reconstruction.\",\"PeriodicalId\":203750,\"journal\":{\"name\":\"2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2002.1009820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2002.1009820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于CNN的渐进式图像重建方法,其中提供了将图像映射到与径向基函数网络系数相关的域的CNN模板,用于图像插值。模拟CNN动态实现了大规模并行计算,因此,所提出的程序将在非常高速的图像解码和编码点上创建CNN的新范式。仿真结果表明,该方法具有良好的图像重建性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Progressive image reconstruction via cellular neural networks
The progressive image reconstruction via CNN is presented, where the CNN template mapping an image to a domain concerned with the coefficients of the radial basis function network for image interpolation is provided. The analog CNN dynamics achieves massively parallel computing, thus, the proposed procedure would create a new paradigm of CNN at the point of very high-speed image decoding and encoding. The simulation results shows good performance of the proposed CNN for image reconstruction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信