连续时间切换线性系统的鲁棒切换设计

Zhendong Sun
{"title":"连续时间切换线性系统的鲁棒切换设计","authors":"Zhendong Sun","doi":"10.1109/CCDC.2012.6244037","DOIUrl":null,"url":null,"abstract":"In this work, we re-examine the state-feedback path-wise switching proposed previously for discrete-time switched systems, and extend the switching design approach to continuous-time switched systems. To properly capture the sensitiveness of a switching signal undergoing various switching perturbations, we define the distance between state-feedback path-wise switching laws. Based on the defined distances, we establish that any asymptotically stabilizable switched linear system is robust with respect to switching perturbations.","PeriodicalId":345790,"journal":{"name":"2012 24th Chinese Control and Decision Conference (CCDC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Robust switching design for continuous-time switched linear systems\",\"authors\":\"Zhendong Sun\",\"doi\":\"10.1109/CCDC.2012.6244037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we re-examine the state-feedback path-wise switching proposed previously for discrete-time switched systems, and extend the switching design approach to continuous-time switched systems. To properly capture the sensitiveness of a switching signal undergoing various switching perturbations, we define the distance between state-feedback path-wise switching laws. Based on the defined distances, we establish that any asymptotically stabilizable switched linear system is robust with respect to switching perturbations.\",\"PeriodicalId\":345790,\"journal\":{\"name\":\"2012 24th Chinese Control and Decision Conference (CCDC)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 24th Chinese Control and Decision Conference (CCDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCDC.2012.6244037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 24th Chinese Control and Decision Conference (CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2012.6244037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在这项工作中,我们重新研究了先前提出的用于离散时间切换系统的状态反馈路径切换,并将切换设计方法扩展到连续时间切换系统。为了正确地捕捉在各种开关扰动下开关信号的灵敏度,我们定义了状态反馈路径切换律之间的距离。基于所定义的距离,我们证明了任何渐近稳定的切换线性系统对于切换扰动都是鲁棒的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust switching design for continuous-time switched linear systems
In this work, we re-examine the state-feedback path-wise switching proposed previously for discrete-time switched systems, and extend the switching design approach to continuous-time switched systems. To properly capture the sensitiveness of a switching signal undergoing various switching perturbations, we define the distance between state-feedback path-wise switching laws. Based on the defined distances, we establish that any asymptotically stabilizable switched linear system is robust with respect to switching perturbations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信