基于弥散加权MRI的前列腺癌精确定位系统

Islam R. Abdelmaksoud, M. Ghazal, A. Shalaby, M. Elmogy, A. Aboulfotouh, M. El-Ghar, R. Keynton, A. El-Baz
{"title":"基于弥散加权MRI的前列腺癌精确定位系统","authors":"Islam R. Abdelmaksoud, M. Ghazal, A. Shalaby, M. Elmogy, A. Aboulfotouh, M. El-Ghar, R. Keynton, A. El-Baz","doi":"10.1109/IST48021.2019.9010552","DOIUrl":null,"url":null,"abstract":"This paper proposes a computer-aided diagnosis (CAD) system for localizing prostate cancer from diffusion-weighted magnetic resonance imaging (DW-MRI). This system uses DW-MRI data sets that were acquired at four b-values: 100, 200, 300, and 400 smm −2. The first step in the proposed system is prostate segmentation using a level set method. The evolution of this level set is guided not only by the intensity of the prostate voxels but also the shape prior of the prostate and the voxels spatial relationships. The second step in the proposed system calculates the apparent diffusion coefficient (ADC) maps of the prostate regions as a discriminating feature between malignant and healthy cases. These ADC maps are used in the last step of the CAD system to fine-tune a pretrained convolutional neural network (CNN) to identify the ADC maps with malignant tumors. The accuracy of the proposed system was evaluated using 40% of the ADC maps while the other 60% are used to fine-tune the pretrained CNN model. The proposed CAD system resulted in an average area under the curve (AUC) of 0.95 at the four b-values.","PeriodicalId":117219,"journal":{"name":"2019 IEEE International Conference on Imaging Systems and Techniques (IST)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Accurate System for Prostate Cancer Localization from Diffusion-Weighted MRI\",\"authors\":\"Islam R. Abdelmaksoud, M. Ghazal, A. Shalaby, M. Elmogy, A. Aboulfotouh, M. El-Ghar, R. Keynton, A. El-Baz\",\"doi\":\"10.1109/IST48021.2019.9010552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a computer-aided diagnosis (CAD) system for localizing prostate cancer from diffusion-weighted magnetic resonance imaging (DW-MRI). This system uses DW-MRI data sets that were acquired at four b-values: 100, 200, 300, and 400 smm −2. The first step in the proposed system is prostate segmentation using a level set method. The evolution of this level set is guided not only by the intensity of the prostate voxels but also the shape prior of the prostate and the voxels spatial relationships. The second step in the proposed system calculates the apparent diffusion coefficient (ADC) maps of the prostate regions as a discriminating feature between malignant and healthy cases. These ADC maps are used in the last step of the CAD system to fine-tune a pretrained convolutional neural network (CNN) to identify the ADC maps with malignant tumors. The accuracy of the proposed system was evaluated using 40% of the ADC maps while the other 60% are used to fine-tune the pretrained CNN model. The proposed CAD system resulted in an average area under the curve (AUC) of 0.95 at the four b-values.\",\"PeriodicalId\":117219,\"journal\":{\"name\":\"2019 IEEE International Conference on Imaging Systems and Techniques (IST)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Imaging Systems and Techniques (IST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IST48021.2019.9010552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Imaging Systems and Techniques (IST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IST48021.2019.9010552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种用于前列腺癌扩散加权磁共振成像(DW-MRI)定位的计算机辅助诊断(CAD)系统。该系统使用DW-MRI数据集,这些数据集在四个b值:100、200、300和400 smm−2下获得。该系统的第一步是使用水平集方法进行前列腺分割。该水平集的演化不仅由前列腺体素的强度指导,而且还由前列腺的形状先验和体素的空间关系指导。该系统的第二步计算前列腺区域的表观扩散系数(ADC)图,作为恶性和健康病例之间的区分特征。这些ADC图在CAD系统的最后一步用于微调预训练的卷积神经网络(CNN),以识别具有恶性肿瘤的ADC图。使用40%的ADC图来评估所提出系统的准确性,而另外60%用于微调预训练的CNN模型。所提出的CAD系统在4个b值处的平均曲线下面积(AUC)为0.95。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Accurate System for Prostate Cancer Localization from Diffusion-Weighted MRI
This paper proposes a computer-aided diagnosis (CAD) system for localizing prostate cancer from diffusion-weighted magnetic resonance imaging (DW-MRI). This system uses DW-MRI data sets that were acquired at four b-values: 100, 200, 300, and 400 smm −2. The first step in the proposed system is prostate segmentation using a level set method. The evolution of this level set is guided not only by the intensity of the prostate voxels but also the shape prior of the prostate and the voxels spatial relationships. The second step in the proposed system calculates the apparent diffusion coefficient (ADC) maps of the prostate regions as a discriminating feature between malignant and healthy cases. These ADC maps are used in the last step of the CAD system to fine-tune a pretrained convolutional neural network (CNN) to identify the ADC maps with malignant tumors. The accuracy of the proposed system was evaluated using 40% of the ADC maps while the other 60% are used to fine-tune the pretrained CNN model. The proposed CAD system resulted in an average area under the curve (AUC) of 0.95 at the four b-values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信