主题模型的文本分割

Martin Riedl, Chris Biemann
{"title":"主题模型的文本分割","authors":"Martin Riedl, Chris Biemann","doi":"10.21248/jlcl.27.2012.158","DOIUrl":null,"url":null,"abstract":"This article presents a general method to use information retrieved from the Latent Dirichlet Allocation (LDA) topic model for Text Segmentation: Using topic assignments instead of words in two well-known Text Segmentation algorithms, namely TextTiling and C99, leads to significant improvements. Further, we introduce our own algorithm called TopicTiling, which is a simplified version of TextTiling (Hearst, 1997). In our study, we evaluate and optimize parameters of LDA and TopicTiling. A further contribution to improve the segmentation accuracy is obtained through stabilizing topic assignments by using information from all LDA inference iterations. Finally, we show that TopicTiling outperforms previous Text Segmentation algorithms on two widely used datasets, while being computationally less expensive than other algorithms.","PeriodicalId":137584,"journal":{"name":"Journal for Language Technology and Computational Linguistics","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":"{\"title\":\"Text Segmentation with Topic Models\",\"authors\":\"Martin Riedl, Chris Biemann\",\"doi\":\"10.21248/jlcl.27.2012.158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a general method to use information retrieved from the Latent Dirichlet Allocation (LDA) topic model for Text Segmentation: Using topic assignments instead of words in two well-known Text Segmentation algorithms, namely TextTiling and C99, leads to significant improvements. Further, we introduce our own algorithm called TopicTiling, which is a simplified version of TextTiling (Hearst, 1997). In our study, we evaluate and optimize parameters of LDA and TopicTiling. A further contribution to improve the segmentation accuracy is obtained through stabilizing topic assignments by using information from all LDA inference iterations. Finally, we show that TopicTiling outperforms previous Text Segmentation algorithms on two widely used datasets, while being computationally less expensive than other algorithms.\",\"PeriodicalId\":137584,\"journal\":{\"name\":\"Journal for Language Technology and Computational Linguistics\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal for Language Technology and Computational Linguistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21248/jlcl.27.2012.158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal for Language Technology and Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21248/jlcl.27.2012.158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

摘要

本文提出了一种使用从潜在狄利克雷分配(Latent Dirichlet Allocation, LDA)主题模型中检索的信息进行文本分割的通用方法:在两种著名的文本分割算法中,即TextTiling和C99,使用主题分配而不是单词,可以显著改进文本分割算法。此外,我们引入了我们自己的算法,称为TopicTiling,这是TextTiling的简化版本(赫斯特,1997)。在我们的研究中,我们评估和优化了LDA和TopicTiling的参数。通过使用来自所有LDA推理迭代的信息来稳定主题分配,进一步提高了分割精度。最后,我们证明了TopicTiling在两个广泛使用的数据集上优于以前的文本分割算法,同时比其他算法的计算成本更低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Text Segmentation with Topic Models
This article presents a general method to use information retrieved from the Latent Dirichlet Allocation (LDA) topic model for Text Segmentation: Using topic assignments instead of words in two well-known Text Segmentation algorithms, namely TextTiling and C99, leads to significant improvements. Further, we introduce our own algorithm called TopicTiling, which is a simplified version of TextTiling (Hearst, 1997). In our study, we evaluate and optimize parameters of LDA and TopicTiling. A further contribution to improve the segmentation accuracy is obtained through stabilizing topic assignments by using information from all LDA inference iterations. Finally, we show that TopicTiling outperforms previous Text Segmentation algorithms on two widely used datasets, while being computationally less expensive than other algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信