人脸识别中不同特征的实验研究

M. Hanmandlu, R. B. Gupta, Farrukh Sayeed, A. Q. Ansari
{"title":"人脸识别中不同特征的实验研究","authors":"M. Hanmandlu, R. B. Gupta, Farrukh Sayeed, A. Q. Ansari","doi":"10.1109/CSNT.2011.121","DOIUrl":null,"url":null,"abstract":"As a first study, the use the Gabor filter bank is made to generate features for face recognition. The features so obtained on the application of SVM classifier yields accuracy rate of 96.2%. With a view to improve the performance, two more feature types, viz., wavelet features and wavelet-fuzzy features resulting from the application of 2D wavelet transform on the Composite detail images and the Approximate images at 3 levels of decomposition, are devised. The ROCs of three feature types show that wavelet-fuzzy features have a better performance. The performance of Gabor features is slightly inferior to that of wavelet-fuzzy features. The algorithm was tested on ORL (Olivetti Research Laboratory) database that has slight orientations in face images.","PeriodicalId":294850,"journal":{"name":"2011 International Conference on Communication Systems and Network Technologies","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"An Experimental Study of Different Features for Face Recognition\",\"authors\":\"M. Hanmandlu, R. B. Gupta, Farrukh Sayeed, A. Q. Ansari\",\"doi\":\"10.1109/CSNT.2011.121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a first study, the use the Gabor filter bank is made to generate features for face recognition. The features so obtained on the application of SVM classifier yields accuracy rate of 96.2%. With a view to improve the performance, two more feature types, viz., wavelet features and wavelet-fuzzy features resulting from the application of 2D wavelet transform on the Composite detail images and the Approximate images at 3 levels of decomposition, are devised. The ROCs of three feature types show that wavelet-fuzzy features have a better performance. The performance of Gabor features is slightly inferior to that of wavelet-fuzzy features. The algorithm was tested on ORL (Olivetti Research Laboratory) database that has slight orientations in face images.\",\"PeriodicalId\":294850,\"journal\":{\"name\":\"2011 International Conference on Communication Systems and Network Technologies\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Communication Systems and Network Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSNT.2011.121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Communication Systems and Network Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSNT.2011.121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

作为第一个研究,利用Gabor滤波器组生成人脸识别的特征。得到的特征在SVM分类器上的应用,准确率达到96.2%。为了提高性能,又设计了两种特征类型,即小波特征和小波模糊特征,这些特征是由二维小波变换应用于复合细节图像和3级分解的近似图像而产生的。三种特征类型的roc结果表明,小波模糊特征具有更好的性能。Gabor特征的性能略低于小波模糊特征。该算法在ORL (Olivetti Research Laboratory)数据库中进行了测试,该数据库中人脸图像有轻微的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Experimental Study of Different Features for Face Recognition
As a first study, the use the Gabor filter bank is made to generate features for face recognition. The features so obtained on the application of SVM classifier yields accuracy rate of 96.2%. With a view to improve the performance, two more feature types, viz., wavelet features and wavelet-fuzzy features resulting from the application of 2D wavelet transform on the Composite detail images and the Approximate images at 3 levels of decomposition, are devised. The ROCs of three feature types show that wavelet-fuzzy features have a better performance. The performance of Gabor features is slightly inferior to that of wavelet-fuzzy features. The algorithm was tested on ORL (Olivetti Research Laboratory) database that has slight orientations in face images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信