分层李群上与分数阶Schrödinger半群相关的平方函数的有界性

Zhiyong Wang, Kai Zhao, Pengtao Li, Yu Liu
{"title":"分层李群上与分数阶Schrödinger半群相关的平方函数的有界性","authors":"Zhiyong Wang, Kai Zhao, Pengtao Li, Yu Liu","doi":"10.3934/cam.2023020","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a Schrödinger operator $ L = -\\Delta_{\\mathbb{H}}+V $ on the stratified Lie group $ \\mathbb{H} $. First, we establish fractional heat kernel estimates related to $ L^{\\beta} $, $ \\beta\\in(0, 1) $. By utilizing kernel estimations and the fractional Carleson measure, we are able to derive a characterization of the Campanato type space $ BMO_{L}^{v}(\\mathbb{H}) $. Second, we demonstrate that both Littlewood-Paley $ {\\bf g} $-functions and area functions are bounded on $ BMO^{v}_{L}(\\mathbb{H}) $. Finally, we also obtain that the above square functions are bounded on the Morrey space $ L^{\\gamma, \\theta}_{p, \\kappa}(\\mathbb{H}) $ and the weak Morrey space $ WL^{\\gamma, \\theta}_{1, \\kappa}(\\mathbb{H}) $, respectively.","PeriodicalId":233941,"journal":{"name":"Communications in Analysis and Mechanics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Boundedness of square functions related with fractional Schrödinger semigroups on stratified Lie groups\",\"authors\":\"Zhiyong Wang, Kai Zhao, Pengtao Li, Yu Liu\",\"doi\":\"10.3934/cam.2023020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a Schrödinger operator $ L = -\\\\Delta_{\\\\mathbb{H}}+V $ on the stratified Lie group $ \\\\mathbb{H} $. First, we establish fractional heat kernel estimates related to $ L^{\\\\beta} $, $ \\\\beta\\\\in(0, 1) $. By utilizing kernel estimations and the fractional Carleson measure, we are able to derive a characterization of the Campanato type space $ BMO_{L}^{v}(\\\\mathbb{H}) $. Second, we demonstrate that both Littlewood-Paley $ {\\\\bf g} $-functions and area functions are bounded on $ BMO^{v}_{L}(\\\\mathbb{H}) $. Finally, we also obtain that the above square functions are bounded on the Morrey space $ L^{\\\\gamma, \\\\theta}_{p, \\\\kappa}(\\\\mathbb{H}) $ and the weak Morrey space $ WL^{\\\\gamma, \\\\theta}_{1, \\\\kappa}(\\\\mathbb{H}) $, respectively.\",\"PeriodicalId\":233941,\"journal\":{\"name\":\"Communications in Analysis and Mechanics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Analysis and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/cam.2023020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cam.2023020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文考虑了分层李群$ \mathbb{H} $上的一个Schrödinger算子$ L = -\Delta_{\mathbb{H}}+V $。首先,我们建立了与$ L^{\beta} $, $ \beta\in(0, 1) $相关的分数热核估计。通过利用核估计和分数阶Carleson测度,我们能够推导出Campanato类型空间$ BMO_{L}^{v}(\mathbb{H}) $的表征。其次,我们证明了Littlewood-Paley $ {\bf g} $ -函数和面积函数都在$ BMO^{v}_{L}(\mathbb{H}) $上有界。最后,我们还得到上述平方函数分别在Morrey空间$ L^{\gamma, \theta}_{p, \kappa}(\mathbb{H}) $和弱Morrey空间$ WL^{\gamma, \theta}_{1, \kappa}(\mathbb{H}) $上有界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundedness of square functions related with fractional Schrödinger semigroups on stratified Lie groups
In this paper, we consider a Schrödinger operator $ L = -\Delta_{\mathbb{H}}+V $ on the stratified Lie group $ \mathbb{H} $. First, we establish fractional heat kernel estimates related to $ L^{\beta} $, $ \beta\in(0, 1) $. By utilizing kernel estimations and the fractional Carleson measure, we are able to derive a characterization of the Campanato type space $ BMO_{L}^{v}(\mathbb{H}) $. Second, we demonstrate that both Littlewood-Paley $ {\bf g} $-functions and area functions are bounded on $ BMO^{v}_{L}(\mathbb{H}) $. Finally, we also obtain that the above square functions are bounded on the Morrey space $ L^{\gamma, \theta}_{p, \kappa}(\mathbb{H}) $ and the weak Morrey space $ WL^{\gamma, \theta}_{1, \kappa}(\mathbb{H}) $, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信