人类精灵神经渲染的半监督管道

Alexandru Ionascu, Sebastian-Aurelian Ștefănigă
{"title":"人类精灵神经渲染的半监督管道","authors":"Alexandru Ionascu, Sebastian-Aurelian Ștefănigă","doi":"10.1109/SYNASC57785.2022.00049","DOIUrl":null,"url":null,"abstract":"In this paper we are discussing the possibility of a hybrid approach in renderable scenes. The main idea of the presented experiment is to render the human actors by using existing videos of the characters. The input video is first converted to a sprite dataset. The dataset is generated with supervised techniques but human intervention is also required. After that we extract body and pose parameters. Lastly, we render novel poses using a GAN-based approach similar to pix2pix.","PeriodicalId":446065,"journal":{"name":"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-Supervised Pipeline for Human Sprites Neural Rendering\",\"authors\":\"Alexandru Ionascu, Sebastian-Aurelian Ștefănigă\",\"doi\":\"10.1109/SYNASC57785.2022.00049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we are discussing the possibility of a hybrid approach in renderable scenes. The main idea of the presented experiment is to render the human actors by using existing videos of the characters. The input video is first converted to a sprite dataset. The dataset is generated with supervised techniques but human intervention is also required. After that we extract body and pose parameters. Lastly, we render novel poses using a GAN-based approach similar to pix2pix.\",\"PeriodicalId\":446065,\"journal\":{\"name\":\"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC57785.2022.00049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC57785.2022.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们讨论了在可渲染场景中混合方法的可能性。本实验的主要思想是利用现有的角色视频来渲染人类演员。输入视频首先被转换为精灵数据集。数据集是由监督技术生成的,但也需要人工干预。之后,我们提取身体和姿态参数。最后,我们使用类似于pix2pix的基于gan的方法渲染新姿势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-Supervised Pipeline for Human Sprites Neural Rendering
In this paper we are discussing the possibility of a hybrid approach in renderable scenes. The main idea of the presented experiment is to render the human actors by using existing videos of the characters. The input video is first converted to a sprite dataset. The dataset is generated with supervised techniques but human intervention is also required. After that we extract body and pose parameters. Lastly, we render novel poses using a GAN-based approach similar to pix2pix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信