{"title":"基于charm的非高斯移动平均过程估计","authors":"A. Slapak, A. Yeredor","doi":"10.1109/EEEI.2012.6376968","DOIUrl":null,"url":null,"abstract":"Blind Moving-Average (MA) parameters estimation methods often resort to higher-order-statistics (HOS) in the form of high-order moments or cumulants in order to retrieve the phase of the generating system when no phase information, e.g., minimum-phase, is available. In this work, a new generic statistic is proposed - called the characteristic mean or charm in short - a generalization of the ordinary mean vector, which nonetheless carries a special form of HOS. The charm is parameterized by a parameters-vector called processing-point, which, when properly selected, conveniently controls the trade-off between the charm's HOS information content and the variance of its sample-estimate. A blind charm-based iterative algorithm is proposed, involving data-driven selection of the processing-point. The resulting algorithm - called CHARMA - is shown to significantly outperform ordinary HOS-based algorithms.","PeriodicalId":177385,"journal":{"name":"2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Charm-based estimator for non-Gaussian moving-average process\",\"authors\":\"A. Slapak, A. Yeredor\",\"doi\":\"10.1109/EEEI.2012.6376968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blind Moving-Average (MA) parameters estimation methods often resort to higher-order-statistics (HOS) in the form of high-order moments or cumulants in order to retrieve the phase of the generating system when no phase information, e.g., minimum-phase, is available. In this work, a new generic statistic is proposed - called the characteristic mean or charm in short - a generalization of the ordinary mean vector, which nonetheless carries a special form of HOS. The charm is parameterized by a parameters-vector called processing-point, which, when properly selected, conveniently controls the trade-off between the charm's HOS information content and the variance of its sample-estimate. A blind charm-based iterative algorithm is proposed, involving data-driven selection of the processing-point. The resulting algorithm - called CHARMA - is shown to significantly outperform ordinary HOS-based algorithms.\",\"PeriodicalId\":177385,\"journal\":{\"name\":\"2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EEEI.2012.6376968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEEI.2012.6376968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Charm-based estimator for non-Gaussian moving-average process
Blind Moving-Average (MA) parameters estimation methods often resort to higher-order-statistics (HOS) in the form of high-order moments or cumulants in order to retrieve the phase of the generating system when no phase information, e.g., minimum-phase, is available. In this work, a new generic statistic is proposed - called the characteristic mean or charm in short - a generalization of the ordinary mean vector, which nonetheless carries a special form of HOS. The charm is parameterized by a parameters-vector called processing-point, which, when properly selected, conveniently controls the trade-off between the charm's HOS information content and the variance of its sample-estimate. A blind charm-based iterative algorithm is proposed, involving data-driven selection of the processing-point. The resulting algorithm - called CHARMA - is shown to significantly outperform ordinary HOS-based algorithms.