基于本体和支持向量机分类器的情感分类

Khin Phyu Phyu Shein, T. Nyunt
{"title":"基于本体和支持向量机分类器的情感分类","authors":"Khin Phyu Phyu Shein, T. Nyunt","doi":"10.1109/ICCSN.2010.35","DOIUrl":null,"url":null,"abstract":"There are a lot of text documents on the Web which contain opinions or sentiments about an object such as software reviews, product reviews, movies reviews, music reviews, and book reviews etc. Opinion mining or sentiment classification aim to extract the features on which the reviewers express their opinions and determine they are positive or negative. In this paper we proposed an ontology based combination approach to enhance the existing approaches of the sentiment classification. We also used the supervised learning techniques for classification of the sentiments in the software reviews. This paper proposed the combination of using Natural Language Processing techniques (NLP), ontology based on Formal Concept Analysis (FCA) design, and Support Vector Machine (SVM) for classifying the software reviews are positive, negative or neutral.","PeriodicalId":255246,"journal":{"name":"2010 Second International Conference on Communication Software and Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Sentiment Classification Based on Ontology and SVM Classifier\",\"authors\":\"Khin Phyu Phyu Shein, T. Nyunt\",\"doi\":\"10.1109/ICCSN.2010.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are a lot of text documents on the Web which contain opinions or sentiments about an object such as software reviews, product reviews, movies reviews, music reviews, and book reviews etc. Opinion mining or sentiment classification aim to extract the features on which the reviewers express their opinions and determine they are positive or negative. In this paper we proposed an ontology based combination approach to enhance the existing approaches of the sentiment classification. We also used the supervised learning techniques for classification of the sentiments in the software reviews. This paper proposed the combination of using Natural Language Processing techniques (NLP), ontology based on Formal Concept Analysis (FCA) design, and Support Vector Machine (SVM) for classifying the software reviews are positive, negative or neutral.\",\"PeriodicalId\":255246,\"journal\":{\"name\":\"2010 Second International Conference on Communication Software and Networks\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Second International Conference on Communication Software and Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSN.2010.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Communication Software and Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSN.2010.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

Web上有许多文本文档,其中包含对某个对象的意见或看法,例如软件评论、产品评论、电影评论、音乐评论和书评等。意见挖掘或情感分类的目的是提取评论者表达意见的特征,并确定这些特征是积极的还是消极的。本文提出了一种基于本体的组合方法,对现有的情感分类方法进行了改进。我们还使用监督学习技术对软件评审中的情感进行分类。本文提出了利用自然语言处理技术(NLP)、基于形式概念分析(FCA)设计的本体和支持向量机(SVM)相结合对软件评价进行正面、负面和中性分类的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sentiment Classification Based on Ontology and SVM Classifier
There are a lot of text documents on the Web which contain opinions or sentiments about an object such as software reviews, product reviews, movies reviews, music reviews, and book reviews etc. Opinion mining or sentiment classification aim to extract the features on which the reviewers express their opinions and determine they are positive or negative. In this paper we proposed an ontology based combination approach to enhance the existing approaches of the sentiment classification. We also used the supervised learning techniques for classification of the sentiments in the software reviews. This paper proposed the combination of using Natural Language Processing techniques (NLP), ontology based on Formal Concept Analysis (FCA) design, and Support Vector Machine (SVM) for classifying the software reviews are positive, negative or neutral.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信