超材料叶片大气压辐射计的演示

Zhipeng Lu, Mohsen Azadi, G. Popov, C. Stanczak, Pratik Ponnarassery, Andy G. Eskenazi, John Cortes, Matthew Campbell, I. Bargatin
{"title":"超材料叶片大气压辐射计的演示","authors":"Zhipeng Lu, Mohsen Azadi, G. Popov, C. Stanczak, Pratik Ponnarassery, Andy G. Eskenazi, John Cortes, Matthew Campbell, I. Bargatin","doi":"10.3390/micromachines2021-09558","DOIUrl":null,"url":null,"abstract":"We report a Crookes radiometer that rotates at atmospheric pressure using architected microporous dielectric plates, known as nanocardboard, as vanes [1,2]. Compared to most light mills working at tens of Pascals [3,4], the functionality at pressures three orders-of-magnitude larger results from the metamaterial vanes’ unique features: (1) extremely low areal density (0.1 mg/cm2) that reduces the vane mass and hub friction force by almost 100 times; (2) high thermal resistivity that increases the cross-vane temperature difference; and (3) micro-channels that enable through-vane thermal transpiration gas flows. \nEach nanocardboard vane features a basketweave-style five-flow-channel pattern to amplify the thermal transpiration force. We manufactured these vanes using microfabrication techniques in four stages: (1) silicon mold creation using photolithography and reactive ion etching; (2) mold conformal coating using atomic layer deposition; (3) carbon nanotube drop-casting and oxygen plasma etching; and (4) mold cleaving and removing using XeF2 isotropic etching [1, 5]. We 3D-printed a 26-mm-diameter quad-arm hub and mounted the vanes to it using super glue. \nWe measured the temperature and rotation speed of the radiometer using thermal and video cameras while illuminating it using an octagonal LED array. We found that our radiometer could operate at atmospheric pressure, and that its rotation rate increased with light intensity. To our knowledge, no other radiometers have achieved such functioning in ambient air. Lastly, we simulated the radiometer’s fluid dynamics, obtaining similar trends between its rotation speed and light intensity and achieving order-of-magnitude agreement with our experiments. Our photophoretically-propelled microstructures reveal new possibilities for light sensing and actuation, aerial microflyers, and photo-generators. \nReferences: \n[1] Lin, Chen, et al. “Nanocardboard as a nanoscale analog of hollow sandwich plates.” Nature Communications 9.1 (2018): 1-8. \n[2] Cortes, John, et al. “Photophoretic Levitation: Photophoretic Levitation of Macroscopic Nanocardboard Plates” (Adv. Mater. 16/2020). Advanced Materials 32.16 (2020): 2070127. \n[3] Han, Li-Hsin, et al. “Light-powered micromotor: design, fabrication, and mathematical modeling.” Journal of Microelectromechanical Systems 20.2 (2011): 487-496. \n[4] Wolfe, David, Andres Larraza, and Alejandro Garcia. “A horizontal vane radiometer: Experiment, theory, and simulation.” Physics of Fluids 28.3 (2016): 037103. \n[5] Azadi, Mohsen, et al. “Demonstration of Atmospheric-Pressure Radiometer With Nanocardboard Vanes.” Journal of Microelectromechanical Systems 29.5 (2020): 811-817.","PeriodicalId":137788,"journal":{"name":"Proceedings of Micromachines 2021 — 1st International Conference on Micromachines and Applications (ICMA2021)","volume":"62 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Demonstration of Atmospheric-Pressure Radiometer with Metamaterial Vanes\",\"authors\":\"Zhipeng Lu, Mohsen Azadi, G. Popov, C. Stanczak, Pratik Ponnarassery, Andy G. Eskenazi, John Cortes, Matthew Campbell, I. Bargatin\",\"doi\":\"10.3390/micromachines2021-09558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report a Crookes radiometer that rotates at atmospheric pressure using architected microporous dielectric plates, known as nanocardboard, as vanes [1,2]. Compared to most light mills working at tens of Pascals [3,4], the functionality at pressures three orders-of-magnitude larger results from the metamaterial vanes’ unique features: (1) extremely low areal density (0.1 mg/cm2) that reduces the vane mass and hub friction force by almost 100 times; (2) high thermal resistivity that increases the cross-vane temperature difference; and (3) micro-channels that enable through-vane thermal transpiration gas flows. \\nEach nanocardboard vane features a basketweave-style five-flow-channel pattern to amplify the thermal transpiration force. We manufactured these vanes using microfabrication techniques in four stages: (1) silicon mold creation using photolithography and reactive ion etching; (2) mold conformal coating using atomic layer deposition; (3) carbon nanotube drop-casting and oxygen plasma etching; and (4) mold cleaving and removing using XeF2 isotropic etching [1, 5]. We 3D-printed a 26-mm-diameter quad-arm hub and mounted the vanes to it using super glue. \\nWe measured the temperature and rotation speed of the radiometer using thermal and video cameras while illuminating it using an octagonal LED array. We found that our radiometer could operate at atmospheric pressure, and that its rotation rate increased with light intensity. To our knowledge, no other radiometers have achieved such functioning in ambient air. Lastly, we simulated the radiometer’s fluid dynamics, obtaining similar trends between its rotation speed and light intensity and achieving order-of-magnitude agreement with our experiments. Our photophoretically-propelled microstructures reveal new possibilities for light sensing and actuation, aerial microflyers, and photo-generators. \\nReferences: \\n[1] Lin, Chen, et al. “Nanocardboard as a nanoscale analog of hollow sandwich plates.” Nature Communications 9.1 (2018): 1-8. \\n[2] Cortes, John, et al. “Photophoretic Levitation: Photophoretic Levitation of Macroscopic Nanocardboard Plates” (Adv. Mater. 16/2020). Advanced Materials 32.16 (2020): 2070127. \\n[3] Han, Li-Hsin, et al. “Light-powered micromotor: design, fabrication, and mathematical modeling.” Journal of Microelectromechanical Systems 20.2 (2011): 487-496. \\n[4] Wolfe, David, Andres Larraza, and Alejandro Garcia. “A horizontal vane radiometer: Experiment, theory, and simulation.” Physics of Fluids 28.3 (2016): 037103. \\n[5] Azadi, Mohsen, et al. “Demonstration of Atmospheric-Pressure Radiometer With Nanocardboard Vanes.” Journal of Microelectromechanical Systems 29.5 (2020): 811-817.\",\"PeriodicalId\":137788,\"journal\":{\"name\":\"Proceedings of Micromachines 2021 — 1st International Conference on Micromachines and Applications (ICMA2021)\",\"volume\":\"62 10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Micromachines 2021 — 1st International Conference on Micromachines and Applications (ICMA2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/micromachines2021-09558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Micromachines 2021 — 1st International Conference on Micromachines and Applications (ICMA2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/micromachines2021-09558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们报道了一种Crookes辐射计,该辐射计在大气压下旋转,使用结构微孔介电板(称为纳米纸板)作为叶片[1,2]。与大多数在几十帕斯卡的压力下工作的轻型磨机相比[3,4],超材料叶片的独特特性使其在压力下的功能大了三个数量级:(1)极低的面密度(0.1 mg/cm2),使叶片质量和轮毂摩擦力减少了近100倍;(2)热电阻率高,增大了十字叶片温差;(3)通过叶片热蒸腾气体流动的微通道。每个纳米纸板风向标都采用篮织式的五流通道模式,以增强热蒸发力。我们使用微加工技术分四个阶段制造这些叶片:(1)使用光刻和反应离子蚀刻技术制造硅模具;(2)模具保形涂层采用原子层沉积;(3)碳纳米管滴铸和氧等离子体刻蚀;(4)采用XeF2各向同性刻蚀法切割和去除模具[1,5]。我们3d打印了一个直径26毫米的四臂轮毂,并使用强力胶将叶片安装在其上。我们使用热摄像机和摄像机测量辐射计的温度和旋转速度,同时使用八角形LED阵列照射辐射计。我们发现辐射计可以在大气压力下工作,它的旋转速度随着光的强度而增加。据我们所知,没有其他辐射计在环境空气中达到这样的功能。最后,我们模拟了辐射计的流体动力学,得到了它的旋转速度和光强之间的类似趋势,并与我们的实验取得了数量级的一致。我们的光驱动微结构揭示了光传感和驱动、空中微型飞行器和光发生器的新可能性。参考文献:[1]Lin, Chen,等。“纳米纸板作为中空夹层板的纳米级模拟物。”自然通讯9.1(2018):1-8。[2] Cortes, John,等。“光致悬浮:宏观纳米纸板的光致悬浮”(Adv. Mater. 16/2020)。新材料学报,32(2020):2070127。[3]韩立新,等。“光动力微马达之设计、制造与数学建模”。微机电系统学报,2011(2):487-496。[4]大卫·沃尔夫,安德烈斯·拉拉扎,亚历杭德罗·加西亚。水平叶片辐射计:实验、理论与模拟。流体物理28.3(2016):037103。[5]张海涛,张海涛,等。基于纳米纸板叶片的大气压力辐射计的研究。微机电系统学报(2020):811-817。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Demonstration of Atmospheric-Pressure Radiometer with Metamaterial Vanes
We report a Crookes radiometer that rotates at atmospheric pressure using architected microporous dielectric plates, known as nanocardboard, as vanes [1,2]. Compared to most light mills working at tens of Pascals [3,4], the functionality at pressures three orders-of-magnitude larger results from the metamaterial vanes’ unique features: (1) extremely low areal density (0.1 mg/cm2) that reduces the vane mass and hub friction force by almost 100 times; (2) high thermal resistivity that increases the cross-vane temperature difference; and (3) micro-channels that enable through-vane thermal transpiration gas flows. Each nanocardboard vane features a basketweave-style five-flow-channel pattern to amplify the thermal transpiration force. We manufactured these vanes using microfabrication techniques in four stages: (1) silicon mold creation using photolithography and reactive ion etching; (2) mold conformal coating using atomic layer deposition; (3) carbon nanotube drop-casting and oxygen plasma etching; and (4) mold cleaving and removing using XeF2 isotropic etching [1, 5]. We 3D-printed a 26-mm-diameter quad-arm hub and mounted the vanes to it using super glue. We measured the temperature and rotation speed of the radiometer using thermal and video cameras while illuminating it using an octagonal LED array. We found that our radiometer could operate at atmospheric pressure, and that its rotation rate increased with light intensity. To our knowledge, no other radiometers have achieved such functioning in ambient air. Lastly, we simulated the radiometer’s fluid dynamics, obtaining similar trends between its rotation speed and light intensity and achieving order-of-magnitude agreement with our experiments. Our photophoretically-propelled microstructures reveal new possibilities for light sensing and actuation, aerial microflyers, and photo-generators. References: [1] Lin, Chen, et al. “Nanocardboard as a nanoscale analog of hollow sandwich plates.” Nature Communications 9.1 (2018): 1-8. [2] Cortes, John, et al. “Photophoretic Levitation: Photophoretic Levitation of Macroscopic Nanocardboard Plates” (Adv. Mater. 16/2020). Advanced Materials 32.16 (2020): 2070127. [3] Han, Li-Hsin, et al. “Light-powered micromotor: design, fabrication, and mathematical modeling.” Journal of Microelectromechanical Systems 20.2 (2011): 487-496. [4] Wolfe, David, Andres Larraza, and Alejandro Garcia. “A horizontal vane radiometer: Experiment, theory, and simulation.” Physics of Fluids 28.3 (2016): 037103. [5] Azadi, Mohsen, et al. “Demonstration of Atmospheric-Pressure Radiometer With Nanocardboard Vanes.” Journal of Microelectromechanical Systems 29.5 (2020): 811-817.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信