幂次迭代去噪

Panganai Gomo, Mike Spann
{"title":"幂次迭代去噪","authors":"Panganai Gomo, Mike Spann","doi":"10.1109/ICMLA.2010.131","DOIUrl":null,"url":null,"abstract":"We present a simple method for image denoising called power iteration denoising (PID). PID finds a low dimensional embedding of the image data using a truncated power iteration on a normalized pair-wise similarity matrix generated from the image. This embedding turns out to be an effective denoising algorithm outperforming the widely used non-local means algorithm. We apply this method to the denoising of noisy digital camera images producing visually pleasing results.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power Iteration Denoising\",\"authors\":\"Panganai Gomo, Mike Spann\",\"doi\":\"10.1109/ICMLA.2010.131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a simple method for image denoising called power iteration denoising (PID). PID finds a low dimensional embedding of the image data using a truncated power iteration on a normalized pair-wise similarity matrix generated from the image. This embedding turns out to be an effective denoising algorithm outperforming the widely used non-local means algorithm. We apply this method to the denoising of noisy digital camera images producing visually pleasing results.\",\"PeriodicalId\":336514,\"journal\":{\"name\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2010.131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种简单的图像去噪方法——功率迭代去噪(PID)。PID通过对由图像生成的归一化成对相似性矩阵进行截断幂次迭代,找到图像数据的低维嵌入。结果表明,该嵌入算法是一种有效的去噪算法,优于广泛使用的非局部均值算法。我们将这种方法应用于噪声数码相机图像的去噪,产生视觉上令人满意的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power Iteration Denoising
We present a simple method for image denoising called power iteration denoising (PID). PID finds a low dimensional embedding of the image data using a truncated power iteration on a normalized pair-wise similarity matrix generated from the image. This embedding turns out to be an effective denoising algorithm outperforming the widely used non-local means algorithm. We apply this method to the denoising of noisy digital camera images producing visually pleasing results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信