混合系统永无止境的无监督学习

A. Dragoni, G. Vallesi, P. Baldassarri
{"title":"混合系统永无止境的无监督学习","authors":"A. Dragoni, G. Vallesi, P. Baldassarri","doi":"10.1109/HIS.2010.5601070","DOIUrl":null,"url":null,"abstract":"We propose a Hybrid System for dynamic environments, where a “Multiple Neural Networks” system works with Bayes Rule. One or more neural nets may no longer be able to properly operate, due to partial changes in some of the characteristics of the individuals. We assume that each expert network has a reliability factor that can be dynamically re-evaluated on the ground of the global recognition operated by the overall group. Since the net's degree of reliability is defined as the probability that the net is giving the desired output, in case of conflicts between the outputs of the various nets the re-evaluation of their degrees of reliability can be simply performed on the basis of the Bayes Rule. The new vector of reliability will be used for making the final choice, by applying two algorithms, the “Inclusion based” and the “Weighted” one over all the maximally consistent subsets of the global outcome.","PeriodicalId":174618,"journal":{"name":"2010 10th International Conference on Hybrid Intelligent Systems","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid system for a never-ending unsupervised learning\",\"authors\":\"A. Dragoni, G. Vallesi, P. Baldassarri\",\"doi\":\"10.1109/HIS.2010.5601070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a Hybrid System for dynamic environments, where a “Multiple Neural Networks” system works with Bayes Rule. One or more neural nets may no longer be able to properly operate, due to partial changes in some of the characteristics of the individuals. We assume that each expert network has a reliability factor that can be dynamically re-evaluated on the ground of the global recognition operated by the overall group. Since the net's degree of reliability is defined as the probability that the net is giving the desired output, in case of conflicts between the outputs of the various nets the re-evaluation of their degrees of reliability can be simply performed on the basis of the Bayes Rule. The new vector of reliability will be used for making the final choice, by applying two algorithms, the “Inclusion based” and the “Weighted” one over all the maximally consistent subsets of the global outcome.\",\"PeriodicalId\":174618,\"journal\":{\"name\":\"2010 10th International Conference on Hybrid Intelligent Systems\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 10th International Conference on Hybrid Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIS.2010.5601070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 10th International Conference on Hybrid Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2010.5601070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个动态环境的混合系统,其中“多神经网络”系统与贝叶斯规则一起工作。由于个体某些特征的局部变化,一个或多个神经网络可能不再能够正常运行。我们假设每个专家网络都有一个可靠度因子,该可靠度因子可以在整体群体操作的全局识别的基础上动态地重新评估。由于网络的可靠度被定义为网络给出期望输出的概率,因此在各种网络的输出之间存在冲突的情况下,可以简单地根据贝叶斯规则对其可靠度进行重新评估。新的可靠性向量将用于做出最终选择,通过应用两种算法,“基于包容”和“加权”的一个在所有最大一致的子集的整体结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid system for a never-ending unsupervised learning
We propose a Hybrid System for dynamic environments, where a “Multiple Neural Networks” system works with Bayes Rule. One or more neural nets may no longer be able to properly operate, due to partial changes in some of the characteristics of the individuals. We assume that each expert network has a reliability factor that can be dynamically re-evaluated on the ground of the global recognition operated by the overall group. Since the net's degree of reliability is defined as the probability that the net is giving the desired output, in case of conflicts between the outputs of the various nets the re-evaluation of their degrees of reliability can be simply performed on the basis of the Bayes Rule. The new vector of reliability will be used for making the final choice, by applying two algorithms, the “Inclusion based” and the “Weighted” one over all the maximally consistent subsets of the global outcome.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信