通过网络惩罚实现最短路径多样化:华盛顿特区案例研究

Danhong Cheng, Olga Gkountouna, Andreas Züfle, D. Pfoser, C. Wenk
{"title":"通过网络惩罚实现最短路径多样化:华盛顿特区案例研究","authors":"Danhong Cheng, Olga Gkountouna, Andreas Züfle, D. Pfoser, C. Wenk","doi":"10.1145/3357000.3366137","DOIUrl":null,"url":null,"abstract":"Traditional navigation systems compute the quantitatively shortest or fastest route between two locations in a spatial network. In practice, a problem resulting from all drivers using the shortest path is the congregation of individuals on routes having a high in-betweenness. To this end, several works have proposed methods for proposing alternative routes. In this work, we test solutions for traffic load-balancing by computing diversified routes proposing variants of the penalty method using the road network of the Washington DC metropolitan area as a case study. Our experimental evaluation shows that the tested Penalty-based approaches allow to significantly balance the load of a spatial network, compared to existing k-shortest path algorithms, and compared to a naive baseline that randomly changes the weights of the network at each shortest-path computation.","PeriodicalId":153340,"journal":{"name":"Proceedings of the 12th ACM SIGSPATIAL International Workshop on Computational Transportation Science","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Shortest-Path Diversification through Network Penalization: A Washington DC Area Case Study\",\"authors\":\"Danhong Cheng, Olga Gkountouna, Andreas Züfle, D. Pfoser, C. Wenk\",\"doi\":\"10.1145/3357000.3366137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional navigation systems compute the quantitatively shortest or fastest route between two locations in a spatial network. In practice, a problem resulting from all drivers using the shortest path is the congregation of individuals on routes having a high in-betweenness. To this end, several works have proposed methods for proposing alternative routes. In this work, we test solutions for traffic load-balancing by computing diversified routes proposing variants of the penalty method using the road network of the Washington DC metropolitan area as a case study. Our experimental evaluation shows that the tested Penalty-based approaches allow to significantly balance the load of a spatial network, compared to existing k-shortest path algorithms, and compared to a naive baseline that randomly changes the weights of the network at each shortest-path computation.\",\"PeriodicalId\":153340,\"journal\":{\"name\":\"Proceedings of the 12th ACM SIGSPATIAL International Workshop on Computational Transportation Science\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th ACM SIGSPATIAL International Workshop on Computational Transportation Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3357000.3366137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th ACM SIGSPATIAL International Workshop on Computational Transportation Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3357000.3366137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

传统的导航系统计算空间网络中两个位置之间的定量最短或最快路线。在实践中,由于所有司机都使用最短路径,导致的一个问题是个体聚集在具有高中间性的路线上。为此,一些作品提出了建议替代路线的方法。在这项工作中,我们通过计算不同的路线来测试交通负载平衡的解决方案,并以华盛顿特区大都市区的道路网络为例,提出了不同的惩罚方法。我们的实验评估表明,与现有的k-最短路径算法和在每个最短路径计算时随机改变网络权重的朴素基线相比,经过测试的基于惩罚的方法可以显着平衡空间网络的负载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shortest-Path Diversification through Network Penalization: A Washington DC Area Case Study
Traditional navigation systems compute the quantitatively shortest or fastest route between two locations in a spatial network. In practice, a problem resulting from all drivers using the shortest path is the congregation of individuals on routes having a high in-betweenness. To this end, several works have proposed methods for proposing alternative routes. In this work, we test solutions for traffic load-balancing by computing diversified routes proposing variants of the penalty method using the road network of the Washington DC metropolitan area as a case study. Our experimental evaluation shows that the tested Penalty-based approaches allow to significantly balance the load of a spatial network, compared to existing k-shortest path algorithms, and compared to a naive baseline that randomly changes the weights of the network at each shortest-path computation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信