多维项目反应理论的参数估计:一种确定维度的有效方法和贝叶斯方法参数估计

Anyu Zhang, Xiaoyao Xie, Fang Li
{"title":"多维项目反应理论的参数估计:一种确定维度的有效方法和贝叶斯方法参数估计","authors":"Anyu Zhang, Xiaoyao Xie, Fang Li","doi":"10.1109/ICASID.2010.5551497","DOIUrl":null,"url":null,"abstract":"Broadly speaking, IRT models can be divided into two families: unidimensional and multidimensional. Unidimensional models require a single trait (ability) dimension θ. Multidimensional IRT models model response data hypothesized to arise from multiple traits. However, because of the greatly increased complexity, the majority of IRT research and applications utilize a unidimensional model. With the developmental, the MIRT is negative to be researcher. In this paper, we proposed the estimation method of determining the number of dimensions for multidimensional item response theory based on combination with Principal Component Analysis and χ2 test. A Joint marginal likelihood estimation method based on Bayesian method is provided in paper. Finally, a suggestion about the issue of numerical calculation of multiple integrals is given.","PeriodicalId":391931,"journal":{"name":"2010 International Conference on Anti-Counterfeiting, Security and Identification","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Parameters estimation for multidimensional item response theory: An effective method of determining dimensions and bayesian method parameters estimation\",\"authors\":\"Anyu Zhang, Xiaoyao Xie, Fang Li\",\"doi\":\"10.1109/ICASID.2010.5551497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Broadly speaking, IRT models can be divided into two families: unidimensional and multidimensional. Unidimensional models require a single trait (ability) dimension θ. Multidimensional IRT models model response data hypothesized to arise from multiple traits. However, because of the greatly increased complexity, the majority of IRT research and applications utilize a unidimensional model. With the developmental, the MIRT is negative to be researcher. In this paper, we proposed the estimation method of determining the number of dimensions for multidimensional item response theory based on combination with Principal Component Analysis and χ2 test. A Joint marginal likelihood estimation method based on Bayesian method is provided in paper. Finally, a suggestion about the issue of numerical calculation of multiple integrals is given.\",\"PeriodicalId\":391931,\"journal\":{\"name\":\"2010 International Conference on Anti-Counterfeiting, Security and Identification\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Anti-Counterfeiting, Security and Identification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASID.2010.5551497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Anti-Counterfeiting, Security and Identification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASID.2010.5551497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

广义地说,IRT模型可以分为两大类:一维模型和多维模型。单维模型需要单个特征(能力)维度θ。多维IRT模型对反应数据进行建模,假设反应数据来自多个特征。然而,由于IRT的复杂性大大增加,大多数IRT研究和应用都使用一维模型。随着技术的发展,MIRT对研究人员来说是消极的。本文结合主成分分析和χ2检验,提出了多维项目反应理论中确定维度数的估计方法。提出了一种基于贝叶斯方法的联合边际似然估计方法。最后,对多重积分的数值计算问题提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameters estimation for multidimensional item response theory: An effective method of determining dimensions and bayesian method parameters estimation
Broadly speaking, IRT models can be divided into two families: unidimensional and multidimensional. Unidimensional models require a single trait (ability) dimension θ. Multidimensional IRT models model response data hypothesized to arise from multiple traits. However, because of the greatly increased complexity, the majority of IRT research and applications utilize a unidimensional model. With the developmental, the MIRT is negative to be researcher. In this paper, we proposed the estimation method of determining the number of dimensions for multidimensional item response theory based on combination with Principal Component Analysis and χ2 test. A Joint marginal likelihood estimation method based on Bayesian method is provided in paper. Finally, a suggestion about the issue of numerical calculation of multiple integrals is given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信