{"title":"在连续模式下操作171Yb+微波离子时钟","authors":"P. Schwindt, T. Hoang, Y. Jau, Richard Overstreet","doi":"10.1109/FCS.2018.8597549","DOIUrl":null,"url":null,"abstract":"We are developing a highly miniaturized 171Yb+ ion clock that operates in a continuous microwave-optical double-resonance mode by continuously probing the 12.6 GHz hyperfine transition in the 171Yb+ ion. In the continuous mode, the clock will not require optical shutters and electrical switches, minimizing the components of the clock. Here, we demonstrate operating the ion clock with ions trapped in a permanently sealed, passively pumped vacuum package 3 cm3in volume. With resonant 369-nm light continuously illuminating the ions, the light shift is a substantial systematic shift of the hyperfine ground state that must to be well characterized and controlled. We present measurements of the liaht shift and demonstrate clock frequency instabilities below $1\\times10^{-12}$ at 100 s of averaging.","PeriodicalId":180164,"journal":{"name":"2018 IEEE International Frequency Control Symposium (IFCS)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Operating a 171Yb+Microwave Ion Clock in a Continuous Mode\",\"authors\":\"P. Schwindt, T. Hoang, Y. Jau, Richard Overstreet\",\"doi\":\"10.1109/FCS.2018.8597549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are developing a highly miniaturized 171Yb+ ion clock that operates in a continuous microwave-optical double-resonance mode by continuously probing the 12.6 GHz hyperfine transition in the 171Yb+ ion. In the continuous mode, the clock will not require optical shutters and electrical switches, minimizing the components of the clock. Here, we demonstrate operating the ion clock with ions trapped in a permanently sealed, passively pumped vacuum package 3 cm3in volume. With resonant 369-nm light continuously illuminating the ions, the light shift is a substantial systematic shift of the hyperfine ground state that must to be well characterized and controlled. We present measurements of the liaht shift and demonstrate clock frequency instabilities below $1\\\\times10^{-12}$ at 100 s of averaging.\",\"PeriodicalId\":180164,\"journal\":{\"name\":\"2018 IEEE International Frequency Control Symposium (IFCS)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Frequency Control Symposium (IFCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCS.2018.8597549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Frequency Control Symposium (IFCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCS.2018.8597549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Operating a 171Yb+Microwave Ion Clock in a Continuous Mode
We are developing a highly miniaturized 171Yb+ ion clock that operates in a continuous microwave-optical double-resonance mode by continuously probing the 12.6 GHz hyperfine transition in the 171Yb+ ion. In the continuous mode, the clock will not require optical shutters and electrical switches, minimizing the components of the clock. Here, we demonstrate operating the ion clock with ions trapped in a permanently sealed, passively pumped vacuum package 3 cm3in volume. With resonant 369-nm light continuously illuminating the ions, the light shift is a substantial systematic shift of the hyperfine ground state that must to be well characterized and controlled. We present measurements of the liaht shift and demonstrate clock frequency instabilities below $1\times10^{-12}$ at 100 s of averaging.