一种基于数据滤波的可控自回归ARMA系统多创新随机梯度参数估计算法

Shijun Wang, Ruifeng Ding
{"title":"一种基于数据滤波的可控自回归ARMA系统多创新随机梯度参数估计算法","authors":"Shijun Wang, Ruifeng Ding","doi":"10.1109/ICIST.2013.6747536","DOIUrl":null,"url":null,"abstract":"This paper decomposes a controlled autoregressive autoregressive moving average (CARARMA) system into two subsystems, uses the data filtering technique to drive a multi-innovation stochastic gradient algorithm for identifying the parameters of each subsystems. The basic idea is to replace the unknown variables in the information vectors with their corresponding estimates. The simulation example shows that the proposed algorithms can work well.","PeriodicalId":415759,"journal":{"name":"2013 IEEE Third International Conference on Information Science and Technology (ICIST)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A multi-innovation stochastic gradient parameter estimation algorithm for controlled autoregressive ARMA systems based on the data filtering\",\"authors\":\"Shijun Wang, Ruifeng Ding\",\"doi\":\"10.1109/ICIST.2013.6747536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper decomposes a controlled autoregressive autoregressive moving average (CARARMA) system into two subsystems, uses the data filtering technique to drive a multi-innovation stochastic gradient algorithm for identifying the parameters of each subsystems. The basic idea is to replace the unknown variables in the information vectors with their corresponding estimates. The simulation example shows that the proposed algorithms can work well.\",\"PeriodicalId\":415759,\"journal\":{\"name\":\"2013 IEEE Third International Conference on Information Science and Technology (ICIST)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Third International Conference on Information Science and Technology (ICIST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIST.2013.6747536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Third International Conference on Information Science and Technology (ICIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST.2013.6747536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文将可控自回归自回归移动平均(CARARMA)系统分解为两个子系统,利用数据滤波技术驱动多创新随机梯度算法对每个子系统的参数进行识别。其基本思想是将信息向量中的未知变量替换为其相应的估计。仿真实例表明,所提出的算法具有较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multi-innovation stochastic gradient parameter estimation algorithm for controlled autoregressive ARMA systems based on the data filtering
This paper decomposes a controlled autoregressive autoregressive moving average (CARARMA) system into two subsystems, uses the data filtering technique to drive a multi-innovation stochastic gradient algorithm for identifying the parameters of each subsystems. The basic idea is to replace the unknown variables in the information vectors with their corresponding estimates. The simulation example shows that the proposed algorithms can work well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信