神经证据集成模型及其应用

Shouzhi Wei, N. Jin, Hui Liu
{"title":"神经证据集成模型及其应用","authors":"Shouzhi Wei, N. Jin, Hui Liu","doi":"10.1109/ICNC.2007.494","DOIUrl":null,"url":null,"abstract":"The oilfield remaining oil distribution forecast is called world-level difficult problems by oil domain specialists in the world. The source of low forecast correctness are only consider objective evidences or subjective evidence, so the forecast results still exist limitation, it result in low accuracy, reliability and so on to identify the classification characteristics and to compute quantitative parameters. So, how to fuse all objective evidences and subjective evidences is a key problem to research remaining oil distribution. A new model is proposed, it integrated BP neural networks combination models and two-level D-S evidence reasoning models, the exact classification results are implemented about many remaining oil distribution characteristics. The classification output reliability of each BP network and the reasoning result reliability of each domain fuzzy expert system are regarded as basic probability assignment of input evidence in D-S evidence reasoning model. The model has applied successfully in Daqing Oilfield of China.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural Evidence Integration Model and Its Application\",\"authors\":\"Shouzhi Wei, N. Jin, Hui Liu\",\"doi\":\"10.1109/ICNC.2007.494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The oilfield remaining oil distribution forecast is called world-level difficult problems by oil domain specialists in the world. The source of low forecast correctness are only consider objective evidences or subjective evidence, so the forecast results still exist limitation, it result in low accuracy, reliability and so on to identify the classification characteristics and to compute quantitative parameters. So, how to fuse all objective evidences and subjective evidences is a key problem to research remaining oil distribution. A new model is proposed, it integrated BP neural networks combination models and two-level D-S evidence reasoning models, the exact classification results are implemented about many remaining oil distribution characteristics. The classification output reliability of each BP network and the reasoning result reliability of each domain fuzzy expert system are regarded as basic probability assignment of input evidence in D-S evidence reasoning model. The model has applied successfully in Daqing Oilfield of China.\",\"PeriodicalId\":250881,\"journal\":{\"name\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2007.494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

油田剩余油分布预测被世界石油领域专家称为世界级难题。预测正确性低的来源仅考虑客观证据或主观证据,因此预测结果仍存在局限性,导致分类特征识别和定量参数计算的准确性、可靠性低等问题。因此,如何融合客观证据和主观证据是研究剩余油分布的关键问题。将BP神经网络组合模型与两级D-S证据推理模型相结合,提出了一种新的模型,实现了多种剩余油分布特征的精确分类结果。在D-S证据推理模型中,将每个BP网络的分类输出可靠性和每个领域模糊专家系统的推理结果可靠性作为输入证据的基本概率分配。该模型已在大庆油田成功应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Evidence Integration Model and Its Application
The oilfield remaining oil distribution forecast is called world-level difficult problems by oil domain specialists in the world. The source of low forecast correctness are only consider objective evidences or subjective evidence, so the forecast results still exist limitation, it result in low accuracy, reliability and so on to identify the classification characteristics and to compute quantitative parameters. So, how to fuse all objective evidences and subjective evidences is a key problem to research remaining oil distribution. A new model is proposed, it integrated BP neural networks combination models and two-level D-S evidence reasoning models, the exact classification results are implemented about many remaining oil distribution characteristics. The classification output reliability of each BP network and the reasoning result reliability of each domain fuzzy expert system are regarded as basic probability assignment of input evidence in D-S evidence reasoning model. The model has applied successfully in Daqing Oilfield of China.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信