无任务持续学习的动态可扩展自注意集成

Fei Ye, A. Bors
{"title":"无任务持续学习的动态可扩展自注意集成","authors":"Fei Ye, A. Bors","doi":"10.1109/ICASSP49357.2023.10094791","DOIUrl":null,"url":null,"abstract":"Continual learning represents a challenging task for modern deep neural networks due to the catastrophic forgetting following the adaptation of network parameters to new tasks. In this paper, we address a more challenging learning paradigm called Task-Free Continual Learning (TFCL), in which the task information is missing during the training. To deal with this problem, we introduce the Dynamic Scalable Self-Attention Ensemble (DSSAE) model, which dynamically adds new Vision Transformer (ViT) based-experts to deal with the data distribution shift during the training. To avoid frequent expansions and ensure an appropriate number of experts for the model, we propose a new dynamic expansion mechanism that evaluates the novelty of incoming samples as expansion signals. Furthermore, the proposed expansion mechanism does not require knowing the task information or the class label, which can be used in a realistic learning environment. Empirical results demonstrate that the proposed DSSAE achieves state-of-the-art performance in a series of TFCL experiments.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Scalable Self-Attention Ensemble for Task-Free Continual Learning\",\"authors\":\"Fei Ye, A. Bors\",\"doi\":\"10.1109/ICASSP49357.2023.10094791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continual learning represents a challenging task for modern deep neural networks due to the catastrophic forgetting following the adaptation of network parameters to new tasks. In this paper, we address a more challenging learning paradigm called Task-Free Continual Learning (TFCL), in which the task information is missing during the training. To deal with this problem, we introduce the Dynamic Scalable Self-Attention Ensemble (DSSAE) model, which dynamically adds new Vision Transformer (ViT) based-experts to deal with the data distribution shift during the training. To avoid frequent expansions and ensure an appropriate number of experts for the model, we propose a new dynamic expansion mechanism that evaluates the novelty of incoming samples as expansion signals. Furthermore, the proposed expansion mechanism does not require knowing the task information or the class label, which can be used in a realistic learning environment. Empirical results demonstrate that the proposed DSSAE achieves state-of-the-art performance in a series of TFCL experiments.\",\"PeriodicalId\":113072,\"journal\":{\"name\":\"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP49357.2023.10094791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10094791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于网络参数适应新任务后的灾难性遗忘,对现代深度神经网络来说,持续学习是一项具有挑战性的任务。在本文中,我们讨论了一种更具挑战性的学习范式,称为无任务持续学习(TFCL),其中任务信息在训练过程中丢失。为了解决这一问题,我们引入了动态可扩展自关注集成(DSSAE)模型,该模型动态地增加了新的基于视觉变换(ViT)的专家来处理训练过程中的数据分布偏移。为了避免频繁的扩展并确保模型的专家数量适当,我们提出了一种新的动态扩展机制,该机制评估输入样本作为扩展信号的新颖性。此外,所提出的扩展机制不需要知道任务信息或类标签,可以在现实的学习环境中使用。在一系列的TFCL实验中,实证结果表明所提出的DSSAE达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Scalable Self-Attention Ensemble for Task-Free Continual Learning
Continual learning represents a challenging task for modern deep neural networks due to the catastrophic forgetting following the adaptation of network parameters to new tasks. In this paper, we address a more challenging learning paradigm called Task-Free Continual Learning (TFCL), in which the task information is missing during the training. To deal with this problem, we introduce the Dynamic Scalable Self-Attention Ensemble (DSSAE) model, which dynamically adds new Vision Transformer (ViT) based-experts to deal with the data distribution shift during the training. To avoid frequent expansions and ensure an appropriate number of experts for the model, we propose a new dynamic expansion mechanism that evaluates the novelty of incoming samples as expansion signals. Furthermore, the proposed expansion mechanism does not require knowing the task information or the class label, which can be used in a realistic learning environment. Empirical results demonstrate that the proposed DSSAE achieves state-of-the-art performance in a series of TFCL experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信