嘈杂环境下的语言进化

B. Touri, Cédric Langbort
{"title":"嘈杂环境下的语言进化","authors":"B. Touri, Cédric Langbort","doi":"10.1109/ACC.2013.6580119","DOIUrl":null,"url":null,"abstract":"We study language formation through reinforcement learning in a signaling game over a noisy channel. We show that under the general assumption of memory-less channel, many of the results that hold for similar dynamics in a noiseless environment, hold in the presence of a noisy channel. In particular, we show that conditioned on the existence of the solution for the fluid dynamics, such dynamics admits a weak Lyapunov function. Furthermore, we show that original dynamics is convergent to the zero set of the derivative of this Lyapunov function along the trajectories of the dynamics.","PeriodicalId":145065,"journal":{"name":"2013 American Control Conference","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Language evolution in a noisy environment\",\"authors\":\"B. Touri, Cédric Langbort\",\"doi\":\"10.1109/ACC.2013.6580119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study language formation through reinforcement learning in a signaling game over a noisy channel. We show that under the general assumption of memory-less channel, many of the results that hold for similar dynamics in a noiseless environment, hold in the presence of a noisy channel. In particular, we show that conditioned on the existence of the solution for the fluid dynamics, such dynamics admits a weak Lyapunov function. Furthermore, we show that original dynamics is convergent to the zero set of the derivative of this Lyapunov function along the trajectories of the dynamics.\",\"PeriodicalId\":145065,\"journal\":{\"name\":\"2013 American Control Conference\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2013.6580119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2013.6580119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们研究语言形成通过强化学习在一个信号游戏在一个有噪声的频道。我们表明,在无内存信道的一般假设下,许多在无噪声环境中保持类似动态的结果,在有噪声信道存在的情况下保持不变。特别地,我们证明了在流体动力学解存在的条件下,这种动力学允许一个弱Lyapunov函数。进一步,我们证明了原始动力学沿动力学轨迹收敛于该李雅普诺夫函数导数的零集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Language evolution in a noisy environment
We study language formation through reinforcement learning in a signaling game over a noisy channel. We show that under the general assumption of memory-less channel, many of the results that hold for similar dynamics in a noiseless environment, hold in the presence of a noisy channel. In particular, we show that conditioned on the existence of the solution for the fluid dynamics, such dynamics admits a weak Lyapunov function. Furthermore, we show that original dynamics is convergent to the zero set of the derivative of this Lyapunov function along the trajectories of the dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信