程序的遗传改良

W. Langdon
{"title":"程序的遗传改良","authors":"W. Langdon","doi":"10.1109/SYNASC.2014.10","DOIUrl":null,"url":null,"abstract":"Genetic programming can optimise software, including: evolving test benchmarks, generating hyper-heuristics by searching meta-heuristics, generating communication protocols, composing telephony systems and web services, generating improved hashing and C++ heap managers, redundant programming and even automatic bug fixing. Particularly in embedded real-time or mobile systems, there may be many ways to trade off expenses (such as time, memory, energy, power consumption) vs. Functionality. Human programmers cannot try them all. Also the best multi-objective Pareto trade off may change with time, underlying hardware and network connection or user behaviour. It may be GP can automatically suggest different trade offs for each new market. Recent results include substantial speed up by evolving a new version of a program customised for a special case.","PeriodicalId":150575,"journal":{"name":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Genetic Improvement of Programs\",\"authors\":\"W. Langdon\",\"doi\":\"10.1109/SYNASC.2014.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genetic programming can optimise software, including: evolving test benchmarks, generating hyper-heuristics by searching meta-heuristics, generating communication protocols, composing telephony systems and web services, generating improved hashing and C++ heap managers, redundant programming and even automatic bug fixing. Particularly in embedded real-time or mobile systems, there may be many ways to trade off expenses (such as time, memory, energy, power consumption) vs. Functionality. Human programmers cannot try them all. Also the best multi-objective Pareto trade off may change with time, underlying hardware and network connection or user behaviour. It may be GP can automatically suggest different trade offs for each new market. Recent results include substantial speed up by evolving a new version of a program customised for a special case.\",\"PeriodicalId\":150575,\"journal\":{\"name\":\"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2014.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2014.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

遗传编程可以优化软件,包括:进化测试基准,通过搜索元启发式生成超启发式,生成通信协议,组合电话系统和web服务,生成改进的散列和c++堆管理器,冗余编程,甚至自动修复错误。特别是在嵌入式实时或移动系统中,可能有许多方法可以权衡费用(如时间、内存、能量、功耗)与功能。人类程序员无法全部尝试。此外,最佳的多目标Pareto权衡可能会随着时间、底层硬件、网络连接或用户行为而变化。GP可能会自动为每个新市场提出不同的折衷方案。最近的结果包括通过开发针对特殊情况定制的程序的新版本来大幅提高速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic Improvement of Programs
Genetic programming can optimise software, including: evolving test benchmarks, generating hyper-heuristics by searching meta-heuristics, generating communication protocols, composing telephony systems and web services, generating improved hashing and C++ heap managers, redundant programming and even automatic bug fixing. Particularly in embedded real-time or mobile systems, there may be many ways to trade off expenses (such as time, memory, energy, power consumption) vs. Functionality. Human programmers cannot try them all. Also the best multi-objective Pareto trade off may change with time, underlying hardware and network connection or user behaviour. It may be GP can automatically suggest different trade offs for each new market. Recent results include substantial speed up by evolving a new version of a program customised for a special case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信