通过机器学习实现对钚的高保真光谱分析

A. Rao, Phillip R. Jenkins, A. Patnaik
{"title":"通过机器学习实现对钚的高保真光谱分析","authors":"A. Rao, Phillip R. Jenkins, A. Patnaik","doi":"10.1364/lacsea.2022.lf1c.1","DOIUrl":null,"url":null,"abstract":"Machine learning methods are constructed to perform analysis of plutonium surrogate material. Decision tree based methods yield predictive models for quantifying gallium from optical emission spectra with sensitivities as low as 0.006 wt%.","PeriodicalId":231405,"journal":{"name":"Optical Sensors and Sensing Congress 2022 (AIS, LACSEA, Sensors, ES)","volume":"170 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enabling high-fidelity spectroscopic analysis of plutonium with machine learning\",\"authors\":\"A. Rao, Phillip R. Jenkins, A. Patnaik\",\"doi\":\"10.1364/lacsea.2022.lf1c.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning methods are constructed to perform analysis of plutonium surrogate material. Decision tree based methods yield predictive models for quantifying gallium from optical emission spectra with sensitivities as low as 0.006 wt%.\",\"PeriodicalId\":231405,\"journal\":{\"name\":\"Optical Sensors and Sensing Congress 2022 (AIS, LACSEA, Sensors, ES)\",\"volume\":\"170 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Sensors and Sensing Congress 2022 (AIS, LACSEA, Sensors, ES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/lacsea.2022.lf1c.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Sensors and Sensing Congress 2022 (AIS, LACSEA, Sensors, ES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/lacsea.2022.lf1c.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

构建了机器学习方法来执行钚替代材料的分析。基于决策树的方法产生了从光学发射光谱定量镓的预测模型,灵敏度低至0.006 wt%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enabling high-fidelity spectroscopic analysis of plutonium with machine learning
Machine learning methods are constructed to perform analysis of plutonium surrogate material. Decision tree based methods yield predictive models for quantifying gallium from optical emission spectra with sensitivities as low as 0.006 wt%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信