{"title":"作者归属使用委员会机器与k近邻评级投票","authors":"A. Kuşakcı","doi":"10.1109/NEUREL.2012.6419997","DOIUrl":null,"url":null,"abstract":"Authorship attribution, namely determination of the author of a text, may become an extraordinarily complex and sensitive job due to its relatively difficult feature extraction phase and highly nonlinear nature. This paper proposes a classification tool using committee machines consisting of multilayered perceptron neural networks (MLP) to identify the author of a text. Each expert is an individual MLP learning complex input-output relation composed of 14 lexical, stylometric attributes extracted from the corpus. The resulting mapping after training is used to identify the texts in German language written by two different authors. Unlike other committee based classification tools individual answers of the experts are combined with a novel voting method, k-nearest neighbors rated voting. The proposed method shows very promising results when benchmarked with simple majority voting technique.","PeriodicalId":343718,"journal":{"name":"11th Symposium on Neural Network Applications in Electrical Engineering","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Authorship attribution using committee machines with k-nearest neighbors rated voting\",\"authors\":\"A. Kuşakcı\",\"doi\":\"10.1109/NEUREL.2012.6419997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Authorship attribution, namely determination of the author of a text, may become an extraordinarily complex and sensitive job due to its relatively difficult feature extraction phase and highly nonlinear nature. This paper proposes a classification tool using committee machines consisting of multilayered perceptron neural networks (MLP) to identify the author of a text. Each expert is an individual MLP learning complex input-output relation composed of 14 lexical, stylometric attributes extracted from the corpus. The resulting mapping after training is used to identify the texts in German language written by two different authors. Unlike other committee based classification tools individual answers of the experts are combined with a novel voting method, k-nearest neighbors rated voting. The proposed method shows very promising results when benchmarked with simple majority voting technique.\",\"PeriodicalId\":343718,\"journal\":{\"name\":\"11th Symposium on Neural Network Applications in Electrical Engineering\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"11th Symposium on Neural Network Applications in Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2012.6419997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"11th Symposium on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2012.6419997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Authorship attribution using committee machines with k-nearest neighbors rated voting
Authorship attribution, namely determination of the author of a text, may become an extraordinarily complex and sensitive job due to its relatively difficult feature extraction phase and highly nonlinear nature. This paper proposes a classification tool using committee machines consisting of multilayered perceptron neural networks (MLP) to identify the author of a text. Each expert is an individual MLP learning complex input-output relation composed of 14 lexical, stylometric attributes extracted from the corpus. The resulting mapping after training is used to identify the texts in German language written by two different authors. Unlike other committee based classification tools individual answers of the experts are combined with a novel voting method, k-nearest neighbors rated voting. The proposed method shows very promising results when benchmarked with simple majority voting technique.