三维空间中二重积子的无环持久形成的局部渐近收敛性

Kwang‐Kyo Oh, H. Ahn
{"title":"三维空间中二重积子的无环持久形成的局部渐近收敛性","authors":"Kwang‐Kyo Oh, H. Ahn","doi":"10.1109/ISIC.2012.6398244","DOIUrl":null,"url":null,"abstract":"We present local asymptotic convergence analysis for a cycle-free persistent formation of double-integrator modeled agents moving in three-dimensional space. Due to the absence of an available common sense of orientation, the agents sense the relative-displacements of their neighbors only with respect to their own local reference frames whose orientations are not aligned, and control the norms of the relative-displacements to stabilize their formation to the desired formation. Under a gradient-based control law for the agents, we prove local asymptotic convergence of the cycle-free persistent formation to the desired formation based on cascade system stability theory. This result is an extension of the existing results on two-dimensional formations of single-integrators.","PeriodicalId":242298,"journal":{"name":"2012 IEEE International Symposium on Intelligent Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Local asymptotic convergence of a cycle-free persistent formation of double-integrators in three-dimensional space\",\"authors\":\"Kwang‐Kyo Oh, H. Ahn\",\"doi\":\"10.1109/ISIC.2012.6398244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present local asymptotic convergence analysis for a cycle-free persistent formation of double-integrator modeled agents moving in three-dimensional space. Due to the absence of an available common sense of orientation, the agents sense the relative-displacements of their neighbors only with respect to their own local reference frames whose orientations are not aligned, and control the norms of the relative-displacements to stabilize their formation to the desired formation. Under a gradient-based control law for the agents, we prove local asymptotic convergence of the cycle-free persistent formation to the desired formation based on cascade system stability theory. This result is an extension of the existing results on two-dimensional formations of single-integrators.\",\"PeriodicalId\":242298,\"journal\":{\"name\":\"2012 IEEE International Symposium on Intelligent Control\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Symposium on Intelligent Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.2012.6398244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2012.6398244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

给出了在三维空间中运动的双积分器模型agent的无循环持久形成的局部渐近收敛分析。由于缺乏可用的共同方向感,智能体只能根据自己的局部参考框架(其方向不对齐)来感知邻居的相对位移,并控制相对位移的规范以稳定其形成所需的形状。基于级联系统稳定性理论,在基于梯度的控制律下,证明了无循环持久编队对期望编队的局部渐近收敛。这一结果是对二维单积分器结构已有结果的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local asymptotic convergence of a cycle-free persistent formation of double-integrators in three-dimensional space
We present local asymptotic convergence analysis for a cycle-free persistent formation of double-integrator modeled agents moving in three-dimensional space. Due to the absence of an available common sense of orientation, the agents sense the relative-displacements of their neighbors only with respect to their own local reference frames whose orientations are not aligned, and control the norms of the relative-displacements to stabilize their formation to the desired formation. Under a gradient-based control law for the agents, we prove local asymptotic convergence of the cycle-free persistent formation to the desired formation based on cascade system stability theory. This result is an extension of the existing results on two-dimensional formations of single-integrators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信