无扭阿贝尔半群环

Ryuki Matsuda
{"title":"无扭阿贝尔半群环","authors":"Ryuki Matsuda","doi":"10.5036/BFSIU1968.18.23","DOIUrl":null,"url":null,"abstract":"If Γ is a nonempty set which is associative under an operation on Γ, we say that Γ is an associative set. We call a torsion-free cancellative commutative associative set S〓{0} a semigroup. We call a commutative ring A with the identity 1 a ring. Let A be a ring, S a semigroup. The semigroup ring A[X;S] of S over A is the ring of elements a1Xα1+...+anXαn, where ai∈A and αi∈S for each i. A general reference on semigroup rings is [6]. The aim of this paper is to continue [12].","PeriodicalId":141145,"journal":{"name":"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1978-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Torsion-free abelian semigroup rings IX\",\"authors\":\"Ryuki Matsuda\",\"doi\":\"10.5036/BFSIU1968.18.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"If Γ is a nonempty set which is associative under an operation on Γ, we say that Γ is an associative set. We call a torsion-free cancellative commutative associative set S〓{0} a semigroup. We call a commutative ring A with the identity 1 a ring. Let A be a ring, S a semigroup. The semigroup ring A[X;S] of S over A is the ring of elements a1Xα1+...+anXαn, where ai∈A and αi∈S for each i. A general reference on semigroup rings is [6]. The aim of this paper is to continue [12].\",\"PeriodicalId\":141145,\"journal\":{\"name\":\"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1978-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5036/BFSIU1968.18.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5036/BFSIU1968.18.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

如果Γ是一个非空集合,并且在对Γ的操作下是关联的,则我们说Γ是一个关联集。我们称无扭转可消交换结合集S ={0}为半群。我们称具有单位元1的交换环a为环。设A是环,S是半群。S / A的半群环A[X;S]是元素环a1Xα1+…+ ax αn,其中ai∈A, αi∈S,对于每个i。半群环的一般参考为[6]。本文的目的是继续[12]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Torsion-free abelian semigroup rings IX
If Γ is a nonempty set which is associative under an operation on Γ, we say that Γ is an associative set. We call a torsion-free cancellative commutative associative set S〓{0} a semigroup. We call a commutative ring A with the identity 1 a ring. Let A be a ring, S a semigroup. The semigroup ring A[X;S] of S over A is the ring of elements a1Xα1+...+anXαn, where ai∈A and αi∈S for each i. A general reference on semigroup rings is [6]. The aim of this paper is to continue [12].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信