GLCM与GLRLM在CT图像中肺组织结构变化的比较研究

B. Jhansi, M. Ramesh, A. Deepak, P. R. Karthikeyan
{"title":"GLCM与GLRLM在CT图像中肺组织结构变化的比较研究","authors":"B. Jhansi, M. Ramesh, A. Deepak, P. R. Karthikeyan","doi":"10.1109/ICTACS56270.2022.9988577","DOIUrl":null,"url":null,"abstract":"The aim of this analysis is to identify the textural alterations due to incidence of COVID-19 in lung CT scan images using GLCM matrix in comparison with GLRLM. Materials and Methods: Sample size is calculated using G power analysis and a total of 176 sample sizes are acquired for this novel texture analysis using parameters like effect size (0.3), standard error rate (0.05), maximum rate (0.8) and allocation rate (N2/N1=1). For this analysis the required CT images are collected from Github. For group 1 a total of 94 sample images are taken and for group 2 a total of 82 sample images are taken. For analyzing the textural alterations of CT scan lung images, comparison between Gray Level Co-occurrence Matrix (GLCM) and Gray Level Run Length Matrix (GLRLM) is carried out for this analysis. In the process of evaluation of classifiers 10-fold cross validation is performed. Normal and COVID subjects are classified using Random forest, K-NN, Logistic regression classifiers for better classification. Results and Discussion: Due to incidence of COVID in lunge tissues it is observed that textural alterations are formed in lung CT scan images. From the acquired features values of GLCM and GLRLM it is observed that GLCM is statistically significant than the GLRLM. Contrast, homogeneity and sum of average features are statistically significant (0.0001) in identifying normal and COVID subjects. The mean value of homogeneity for healthy controls is (0.215) and for COVID subjects it is (0.327) such that normal subjects have a gentle surface of the lung and COVID subjects have rough surface and significance value is (p<0.05). GLCM has acquired precision (0.931), F1-score (0.928), Recall (0.929), AUC (0.981), Classification Accuracy (0.929) are obtained using random forest classifiers. From the above values it is observed that COVID subjects have textural variations than the normal subjects. Conclusion: From this analysis it is observed that GLCM provides significantly better classification in differentiating the COVID and normal subjects than GLRLM.","PeriodicalId":385163,"journal":{"name":"2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluating Textural Changes of Lung in CT Images using GLCM in Comparison with GLRLM\",\"authors\":\"B. Jhansi, M. Ramesh, A. Deepak, P. R. Karthikeyan\",\"doi\":\"10.1109/ICTACS56270.2022.9988577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this analysis is to identify the textural alterations due to incidence of COVID-19 in lung CT scan images using GLCM matrix in comparison with GLRLM. Materials and Methods: Sample size is calculated using G power analysis and a total of 176 sample sizes are acquired for this novel texture analysis using parameters like effect size (0.3), standard error rate (0.05), maximum rate (0.8) and allocation rate (N2/N1=1). For this analysis the required CT images are collected from Github. For group 1 a total of 94 sample images are taken and for group 2 a total of 82 sample images are taken. For analyzing the textural alterations of CT scan lung images, comparison between Gray Level Co-occurrence Matrix (GLCM) and Gray Level Run Length Matrix (GLRLM) is carried out for this analysis. In the process of evaluation of classifiers 10-fold cross validation is performed. Normal and COVID subjects are classified using Random forest, K-NN, Logistic regression classifiers for better classification. Results and Discussion: Due to incidence of COVID in lunge tissues it is observed that textural alterations are formed in lung CT scan images. From the acquired features values of GLCM and GLRLM it is observed that GLCM is statistically significant than the GLRLM. Contrast, homogeneity and sum of average features are statistically significant (0.0001) in identifying normal and COVID subjects. The mean value of homogeneity for healthy controls is (0.215) and for COVID subjects it is (0.327) such that normal subjects have a gentle surface of the lung and COVID subjects have rough surface and significance value is (p<0.05). GLCM has acquired precision (0.931), F1-score (0.928), Recall (0.929), AUC (0.981), Classification Accuracy (0.929) are obtained using random forest classifiers. From the above values it is observed that COVID subjects have textural variations than the normal subjects. Conclusion: From this analysis it is observed that GLCM provides significantly better classification in differentiating the COVID and normal subjects than GLRLM.\",\"PeriodicalId\":385163,\"journal\":{\"name\":\"2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTACS56270.2022.9988577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTACS56270.2022.9988577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本分析的目的是利用GLCM矩阵与GLRLM比较,确定肺部CT扫描图像中因COVID-19发病率而引起的纹理改变。材料与方法:采用G幂分析计算样本量,采用效应量(0.3)、标准错误率(0.05)、最大错误率(0.8)、分配率(N2/N1=1)等参数,共获得176个样本量。为了进行分析,所需的CT图像是从Github上收集的。第1组共拍摄94张样本图像,第2组共拍摄82张样本图像。为了分析CT扫描肺部图像的纹理变化,对灰度共生矩阵(GLCM)和灰度运行长度矩阵(GLRLM)进行了比较分析。在评估分类器的过程中进行了10次交叉验证。使用随机森林、K-NN和逻辑回归分类器对正常受试者和COVID受试者进行分类,以获得更好的分类效果。结果与讨论:由于COVID在肺部组织中的发病率,我们观察到肺部CT扫描图像形成了纹理改变。从GLCM和GLRLM获得的特征值可以看出,GLCM比GLRLM具有统计学显著性。在识别正常受试者和新冠肺炎受试者时,对比、均匀性和平均特征之和具有统计学意义(0.0001)。健康对照组的均匀性平均值为(0.215),新冠肺炎患者的均匀性平均值为(0.327),正常组肺表面光滑,新冠肺炎患者肺表面粗糙,显著性值为(p<0.05)。使用随机森林分类器得到GLCM的精密度(0.931)、f1得分(0.928)、召回率(0.929)、AUC(0.981)和分类准确率(0.929)。从上述值可以观察到,与正常受试者相比,COVID受试者具有纹理变化。结论:GLCM比GLRLM在区分新冠病毒和正常人方面具有更好的分类效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating Textural Changes of Lung in CT Images using GLCM in Comparison with GLRLM
The aim of this analysis is to identify the textural alterations due to incidence of COVID-19 in lung CT scan images using GLCM matrix in comparison with GLRLM. Materials and Methods: Sample size is calculated using G power analysis and a total of 176 sample sizes are acquired for this novel texture analysis using parameters like effect size (0.3), standard error rate (0.05), maximum rate (0.8) and allocation rate (N2/N1=1). For this analysis the required CT images are collected from Github. For group 1 a total of 94 sample images are taken and for group 2 a total of 82 sample images are taken. For analyzing the textural alterations of CT scan lung images, comparison between Gray Level Co-occurrence Matrix (GLCM) and Gray Level Run Length Matrix (GLRLM) is carried out for this analysis. In the process of evaluation of classifiers 10-fold cross validation is performed. Normal and COVID subjects are classified using Random forest, K-NN, Logistic regression classifiers for better classification. Results and Discussion: Due to incidence of COVID in lunge tissues it is observed that textural alterations are formed in lung CT scan images. From the acquired features values of GLCM and GLRLM it is observed that GLCM is statistically significant than the GLRLM. Contrast, homogeneity and sum of average features are statistically significant (0.0001) in identifying normal and COVID subjects. The mean value of homogeneity for healthy controls is (0.215) and for COVID subjects it is (0.327) such that normal subjects have a gentle surface of the lung and COVID subjects have rough surface and significance value is (p<0.05). GLCM has acquired precision (0.931), F1-score (0.928), Recall (0.929), AUC (0.981), Classification Accuracy (0.929) are obtained using random forest classifiers. From the above values it is observed that COVID subjects have textural variations than the normal subjects. Conclusion: From this analysis it is observed that GLCM provides significantly better classification in differentiating the COVID and normal subjects than GLRLM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信