基于多特征融合的粒子滤波目标轮廓跟踪

Xiaofeng Lu, Li Song, Songyu Yu, N. Ling
{"title":"基于多特征融合的粒子滤波目标轮廓跟踪","authors":"Xiaofeng Lu, Li Song, Songyu Yu, N. Ling","doi":"10.1109/ICIEA.2012.6360729","DOIUrl":null,"url":null,"abstract":"In this paper, a novel object contour tracking framework integrating independent multi-feature fusion object rough location and region-based temporal differencing model is proposed. In our model, the object rough location tracking is realized by color histogram and Harris corner features fusion method in particle filter framework. Thus it can achieve more robust tracking performance in many challenge scenes. And this particle filter framework is based on our previous CamShift guided particle filter [7]. With the rough object location, efficient region-based temporal differencing model is adopted for object contour detection, then this method is faster and more effective compared to active contour models or conventional global temporal differencing models. Moreover, exact contour tracking result can be used to guide the particle propagation of next frame, to enable more efficient particle redistributions and reducing particle degeneration. Experimental results demonstrate that this proposed method is simple but effective in object location and contour tracking.","PeriodicalId":220747,"journal":{"name":"2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Object contour tracking using multi-feature fusion based particle filter\",\"authors\":\"Xiaofeng Lu, Li Song, Songyu Yu, N. Ling\",\"doi\":\"10.1109/ICIEA.2012.6360729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel object contour tracking framework integrating independent multi-feature fusion object rough location and region-based temporal differencing model is proposed. In our model, the object rough location tracking is realized by color histogram and Harris corner features fusion method in particle filter framework. Thus it can achieve more robust tracking performance in many challenge scenes. And this particle filter framework is based on our previous CamShift guided particle filter [7]. With the rough object location, efficient region-based temporal differencing model is adopted for object contour detection, then this method is faster and more effective compared to active contour models or conventional global temporal differencing models. Moreover, exact contour tracking result can be used to guide the particle propagation of next frame, to enable more efficient particle redistributions and reducing particle degeneration. Experimental results demonstrate that this proposed method is simple but effective in object location and contour tracking.\",\"PeriodicalId\":220747,\"journal\":{\"name\":\"2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2012.6360729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2012.6360729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

本文提出了一种融合独立多特征融合目标粗定位和基于区域的时间差分模型的目标轮廓跟踪框架。在该模型中,采用粒子滤波框架下的颜色直方图和Harris角点特征融合方法实现目标粗定位跟踪。因此,它可以在许多挑战场景中实现更稳健的跟踪性能。这个粒子滤波框架是基于我们之前的CamShift引导粒子滤波[7]。在粗糙目标定位的基础上,采用高效的基于区域的时间差分模型进行目标轮廓检测,相对于主动轮廓模型或传统的全局时间差分模型,该方法更快、更有效。此外,精确的轮廓跟踪结果可以指导下一帧的粒子传播,从而实现更有效的粒子重分布,减少粒子退化。实验结果表明,该方法在目标定位和轮廓跟踪方面简单有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Object contour tracking using multi-feature fusion based particle filter
In this paper, a novel object contour tracking framework integrating independent multi-feature fusion object rough location and region-based temporal differencing model is proposed. In our model, the object rough location tracking is realized by color histogram and Harris corner features fusion method in particle filter framework. Thus it can achieve more robust tracking performance in many challenge scenes. And this particle filter framework is based on our previous CamShift guided particle filter [7]. With the rough object location, efficient region-based temporal differencing model is adopted for object contour detection, then this method is faster and more effective compared to active contour models or conventional global temporal differencing models. Moreover, exact contour tracking result can be used to guide the particle propagation of next frame, to enable more efficient particle redistributions and reducing particle degeneration. Experimental results demonstrate that this proposed method is simple but effective in object location and contour tracking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信