Danilo Pianini, Federico Pettinari, Roberto Casadei, L. Esterle
{"title":"多机器人系统中分散k-覆盖的集体自适应方法","authors":"Danilo Pianini, Federico Pettinari, Roberto Casadei, L. Esterle","doi":"10.1145/3547145","DOIUrl":null,"url":null,"abstract":"We focus on the online multi-object k-coverage problem (OMOkC), where mobile robots are required to sense a mobile target from k diverse points of view, coordinating themselves in a scalable and possibly decentralised way. There is active research on OMOkC, particularly in the design of decentralised algorithms for solving it. We propose a new take on the issue: Rather than classically developing new algorithms, we apply a macro-level paradigm, called aggregate computing, specifically designed to directly program the global behaviour of a whole ensemble of devices at once. To understand the potential of the application of aggregate computing to OMOkC, we extend the Alchemist simulator (supporting aggregate computing natively) with a novel toolchain component supporting the simulation of mobile robots. This way, we build a software engineering toolchain comprising language and simulation tooling for addressing OMOkC. Finally, we exercise our approach and related toolchain by introducing new algorithms for OMOkC; we show that they can be expressed concisely, reuse existing software components and perform better than the current state-of-the-art in terms of coverage over time and number of objects covered overall.","PeriodicalId":377078,"journal":{"name":"ACM Transactions on Autonomous and Adaptive Systems (TAAS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Collective Adaptive Approach to Decentralised k-Coverage in Multi-robot Systems\",\"authors\":\"Danilo Pianini, Federico Pettinari, Roberto Casadei, L. Esterle\",\"doi\":\"10.1145/3547145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We focus on the online multi-object k-coverage problem (OMOkC), where mobile robots are required to sense a mobile target from k diverse points of view, coordinating themselves in a scalable and possibly decentralised way. There is active research on OMOkC, particularly in the design of decentralised algorithms for solving it. We propose a new take on the issue: Rather than classically developing new algorithms, we apply a macro-level paradigm, called aggregate computing, specifically designed to directly program the global behaviour of a whole ensemble of devices at once. To understand the potential of the application of aggregate computing to OMOkC, we extend the Alchemist simulator (supporting aggregate computing natively) with a novel toolchain component supporting the simulation of mobile robots. This way, we build a software engineering toolchain comprising language and simulation tooling for addressing OMOkC. Finally, we exercise our approach and related toolchain by introducing new algorithms for OMOkC; we show that they can be expressed concisely, reuse existing software components and perform better than the current state-of-the-art in terms of coverage over time and number of objects covered overall.\",\"PeriodicalId\":377078,\"journal\":{\"name\":\"ACM Transactions on Autonomous and Adaptive Systems (TAAS)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Autonomous and Adaptive Systems (TAAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3547145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Autonomous and Adaptive Systems (TAAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3547145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Collective Adaptive Approach to Decentralised k-Coverage in Multi-robot Systems
We focus on the online multi-object k-coverage problem (OMOkC), where mobile robots are required to sense a mobile target from k diverse points of view, coordinating themselves in a scalable and possibly decentralised way. There is active research on OMOkC, particularly in the design of decentralised algorithms for solving it. We propose a new take on the issue: Rather than classically developing new algorithms, we apply a macro-level paradigm, called aggregate computing, specifically designed to directly program the global behaviour of a whole ensemble of devices at once. To understand the potential of the application of aggregate computing to OMOkC, we extend the Alchemist simulator (supporting aggregate computing natively) with a novel toolchain component supporting the simulation of mobile robots. This way, we build a software engineering toolchain comprising language and simulation tooling for addressing OMOkC. Finally, we exercise our approach and related toolchain by introducing new algorithms for OMOkC; we show that they can be expressed concisely, reuse existing software components and perform better than the current state-of-the-art in terms of coverage over time and number of objects covered overall.