{"title":"一个I/O迷你应用程序,致力于现场可视化","authors":"S. Ziegeler","doi":"10.1109/ISAV.2016.11","DOIUrl":null,"url":null,"abstract":"In situ visualization promises to offer one solution to the problem of stagnant I/O bandwidths relative to computing capacity. Yet, it has drawbacks, including a lack of explorable results. This can be addressed by producing derived or extracted results instead of just images. However, the I/O for these results is not guaranteed to be sufficiently scalable if not designed properly. We present an I/O mini app that measures derived quantity I/O performance. It produces isosurfaces with a data generation function allowing fine control of the volume, load imbalance, and other aspects of the isosurface geometry output data. We also provide ongoing results of scalability benchmarks with various output methodologies.","PeriodicalId":229382,"journal":{"name":"2016 Second Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization (ISAV)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An I/O Mini-App Dedicated to In Situ Visualization\",\"authors\":\"S. Ziegeler\",\"doi\":\"10.1109/ISAV.2016.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In situ visualization promises to offer one solution to the problem of stagnant I/O bandwidths relative to computing capacity. Yet, it has drawbacks, including a lack of explorable results. This can be addressed by producing derived or extracted results instead of just images. However, the I/O for these results is not guaranteed to be sufficiently scalable if not designed properly. We present an I/O mini app that measures derived quantity I/O performance. It produces isosurfaces with a data generation function allowing fine control of the volume, load imbalance, and other aspects of the isosurface geometry output data. We also provide ongoing results of scalability benchmarks with various output methodologies.\",\"PeriodicalId\":229382,\"journal\":{\"name\":\"2016 Second Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization (ISAV)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Second Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization (ISAV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAV.2016.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Second Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization (ISAV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAV.2016.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An I/O Mini-App Dedicated to In Situ Visualization
In situ visualization promises to offer one solution to the problem of stagnant I/O bandwidths relative to computing capacity. Yet, it has drawbacks, including a lack of explorable results. This can be addressed by producing derived or extracted results instead of just images. However, the I/O for these results is not guaranteed to be sufficiently scalable if not designed properly. We present an I/O mini app that measures derived quantity I/O performance. It produces isosurfaces with a data generation function allowing fine control of the volume, load imbalance, and other aspects of the isosurface geometry output data. We also provide ongoing results of scalability benchmarks with various output methodologies.