立体声回声消除的变正则化低复杂度RLS算法

C. Stanciu, C. Anghel, M. Udrea, L. Stanciu
{"title":"立体声回声消除的变正则化低复杂度RLS算法","authors":"C. Stanciu, C. Anghel, M. Udrea, L. Stanciu","doi":"10.1109/ISSCS.2017.8034933","DOIUrl":null,"url":null,"abstract":"The classical stereophonic acoustic echo cancellation (SAEC) scheme requires the identification of four echo paths using the same number of adaptive algorithms. The SAEC setup can be reinterpreted by employing the widely linear (WL) model, which recasts the two-input/two-output system with real random variables as a single-input/single-output system with complex random variables. The WL model improves the handling and reduces the number of adaptive algorithms to only one, requiring the same computational workload. In this paper, we employ RLS-type adaptive algorithms for the SAEC configuration and we focus on the regularization problem, which is important in the presence of additive noise. Furthermore, we analyze a low complexity version of the RLS, by combining it with the dichotomous coordinate descent (DCD) iterations. We determine a regularization parameter based on the signal-to-noise ratio (SNR). Moreover, by using a suitable estimation of the SNR, we propose a low complexity variable regularized RLS algorithm. Simulations performed in the context of SAEC demonstrate the robustness of the proposed regularization method in noisy conditions, such as the double-talk scenarios.","PeriodicalId":338255,"journal":{"name":"2017 International Symposium on Signals, Circuits and Systems (ISSCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Variable-regularized low complexity RLS algorithm for stereophonic acoustic echo cancellation\",\"authors\":\"C. Stanciu, C. Anghel, M. Udrea, L. Stanciu\",\"doi\":\"10.1109/ISSCS.2017.8034933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The classical stereophonic acoustic echo cancellation (SAEC) scheme requires the identification of four echo paths using the same number of adaptive algorithms. The SAEC setup can be reinterpreted by employing the widely linear (WL) model, which recasts the two-input/two-output system with real random variables as a single-input/single-output system with complex random variables. The WL model improves the handling and reduces the number of adaptive algorithms to only one, requiring the same computational workload. In this paper, we employ RLS-type adaptive algorithms for the SAEC configuration and we focus on the regularization problem, which is important in the presence of additive noise. Furthermore, we analyze a low complexity version of the RLS, by combining it with the dichotomous coordinate descent (DCD) iterations. We determine a regularization parameter based on the signal-to-noise ratio (SNR). Moreover, by using a suitable estimation of the SNR, we propose a low complexity variable regularized RLS algorithm. Simulations performed in the context of SAEC demonstrate the robustness of the proposed regularization method in noisy conditions, such as the double-talk scenarios.\",\"PeriodicalId\":338255,\"journal\":{\"name\":\"2017 International Symposium on Signals, Circuits and Systems (ISSCS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Symposium on Signals, Circuits and Systems (ISSCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCS.2017.8034933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Symposium on Signals, Circuits and Systems (ISSCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCS.2017.8034933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

经典的立体声回声消除(SAEC)方案要求使用相同数量的自适应算法识别四条回波路径。SAEC设置可以通过广泛线性(WL)模型重新解释,该模型将具有真实随机变量的双输入/双输出系统重新定义为具有复杂随机变量的单输入/单输出系统。WL模型提高了处理能力,并将自适应算法的数量减少到只有一种,并且需要相同的计算工作量。在本文中,我们采用rls型自适应算法对SAEC进行配置,并重点关注正则化问题,这在存在加性噪声时很重要。此外,我们分析了一种低复杂度版本的RLS,将其与二分类坐标下降(DCD)迭代相结合。我们根据信噪比(SNR)确定正则化参数。此外,通过适当的信噪比估计,我们提出了一种低复杂度的变量正则化RLS算法。在SAEC环境下进行的仿真证明了所提出的正则化方法在噪声条件下的鲁棒性,例如双对话场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variable-regularized low complexity RLS algorithm for stereophonic acoustic echo cancellation
The classical stereophonic acoustic echo cancellation (SAEC) scheme requires the identification of four echo paths using the same number of adaptive algorithms. The SAEC setup can be reinterpreted by employing the widely linear (WL) model, which recasts the two-input/two-output system with real random variables as a single-input/single-output system with complex random variables. The WL model improves the handling and reduces the number of adaptive algorithms to only one, requiring the same computational workload. In this paper, we employ RLS-type adaptive algorithms for the SAEC configuration and we focus on the regularization problem, which is important in the presence of additive noise. Furthermore, we analyze a low complexity version of the RLS, by combining it with the dichotomous coordinate descent (DCD) iterations. We determine a regularization parameter based on the signal-to-noise ratio (SNR). Moreover, by using a suitable estimation of the SNR, we propose a low complexity variable regularized RLS algorithm. Simulations performed in the context of SAEC demonstrate the robustness of the proposed regularization method in noisy conditions, such as the double-talk scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信