深度学习的生物识别密码系统:安全领域的新前沿

Prabhjot Kaur, N. Kumar
{"title":"深度学习的生物识别密码系统:安全领域的新前沿","authors":"Prabhjot Kaur, N. Kumar","doi":"10.1109/APSIT58554.2023.10201772","DOIUrl":null,"url":null,"abstract":"The Biometric cryptosystem uses a variety of methods to protect templates. In this work, a deep learning-based approach to improve the robustness of the fuzzy vault scheme in biometric cryptosystems. Our approach uses a CNN to extract distinctive features from biometric data and generate the polynomial equation that unlocks the vault. We evaluate our approach on a dataset of fingerprint images and demonstrate that it achieves higher accuracy of 89.9% than traditional methods. The relation between original and decrypted image is computed based on various parameters such as Cr., MSE, MAE etc. and overall fair performance is achieved on four fingerprint databases.","PeriodicalId":170044,"journal":{"name":"2023 International Conference in Advances in Power, Signal, and Information Technology (APSIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biometric Cryptosystem with Deep Learning: A New Frontier in Security\",\"authors\":\"Prabhjot Kaur, N. Kumar\",\"doi\":\"10.1109/APSIT58554.2023.10201772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Biometric cryptosystem uses a variety of methods to protect templates. In this work, a deep learning-based approach to improve the robustness of the fuzzy vault scheme in biometric cryptosystems. Our approach uses a CNN to extract distinctive features from biometric data and generate the polynomial equation that unlocks the vault. We evaluate our approach on a dataset of fingerprint images and demonstrate that it achieves higher accuracy of 89.9% than traditional methods. The relation between original and decrypted image is computed based on various parameters such as Cr., MSE, MAE etc. and overall fair performance is achieved on four fingerprint databases.\",\"PeriodicalId\":170044,\"journal\":{\"name\":\"2023 International Conference in Advances in Power, Signal, and Information Technology (APSIT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference in Advances in Power, Signal, and Information Technology (APSIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSIT58554.2023.10201772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference in Advances in Power, Signal, and Information Technology (APSIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIT58554.2023.10201772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物识别密码系统使用多种方法来保护模板。在这项工作中,一种基于深度学习的方法来提高生物识别密码系统中模糊拱顶方案的鲁棒性。我们的方法使用CNN从生物特征数据中提取独特的特征,并生成打开保险库的多项式方程。我们在指纹图像数据集上评估了我们的方法,并证明它比传统方法达到了89.9%的更高准确率。基于Cr、MSE、MAE等参数计算原始图像与解密图像之间的关系,在4个指纹数据库上取得了比较好的总体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biometric Cryptosystem with Deep Learning: A New Frontier in Security
The Biometric cryptosystem uses a variety of methods to protect templates. In this work, a deep learning-based approach to improve the robustness of the fuzzy vault scheme in biometric cryptosystems. Our approach uses a CNN to extract distinctive features from biometric data and generate the polynomial equation that unlocks the vault. We evaluate our approach on a dataset of fingerprint images and demonstrate that it achieves higher accuracy of 89.9% than traditional methods. The relation between original and decrypted image is computed based on various parameters such as Cr., MSE, MAE etc. and overall fair performance is achieved on four fingerprint databases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信