{"title":"有限状态分类器与Mahalanobis-Taguchi系统在皮肤癌多变量模式识别中的比较","authors":"E. Cudney, S. Corns","doi":"10.1109/CIBCB.2011.5948469","DOIUrl":null,"url":null,"abstract":"This project presents two methods for image classification for the detection of malignant melanoma: the Mahalanobis-Taguchi System and Finite State Classifiers. The Mahalanobis-Taguchi System is a diagnosis and predictive method for analyzing patterns in multivariate cases, while Finite State Classifiers are a state based machine learning technique. The goal of this study is to compare the ability of the Mahalanobis-Taguchi System and a Finite State Classifier to discriminate using small data sets. We examine the discriminant ability as a function of data set size using publicly available skin lesion image data. While analysis of the data shows a high degree of correlation, the Mahalanobis-Taguchi System performed poorly when trying to discriminate between Malignant Melanoma and benign lesions. Alternately, the Finite State Classifiers developed using evolutionary computation obtained over 85% correct classification of the malignant and benign lesions using the image data sets.","PeriodicalId":395505,"journal":{"name":"2011 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A comparison of Finite State Classifier and Mahalanobis-Taguchi System for multivariate pattern recognition in skin cancer detection\",\"authors\":\"E. Cudney, S. Corns\",\"doi\":\"10.1109/CIBCB.2011.5948469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This project presents two methods for image classification for the detection of malignant melanoma: the Mahalanobis-Taguchi System and Finite State Classifiers. The Mahalanobis-Taguchi System is a diagnosis and predictive method for analyzing patterns in multivariate cases, while Finite State Classifiers are a state based machine learning technique. The goal of this study is to compare the ability of the Mahalanobis-Taguchi System and a Finite State Classifier to discriminate using small data sets. We examine the discriminant ability as a function of data set size using publicly available skin lesion image data. While analysis of the data shows a high degree of correlation, the Mahalanobis-Taguchi System performed poorly when trying to discriminate between Malignant Melanoma and benign lesions. Alternately, the Finite State Classifiers developed using evolutionary computation obtained over 85% correct classification of the malignant and benign lesions using the image data sets.\",\"PeriodicalId\":395505,\"journal\":{\"name\":\"2011 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2011.5948469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2011.5948469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A comparison of Finite State Classifier and Mahalanobis-Taguchi System for multivariate pattern recognition in skin cancer detection
This project presents two methods for image classification for the detection of malignant melanoma: the Mahalanobis-Taguchi System and Finite State Classifiers. The Mahalanobis-Taguchi System is a diagnosis and predictive method for analyzing patterns in multivariate cases, while Finite State Classifiers are a state based machine learning technique. The goal of this study is to compare the ability of the Mahalanobis-Taguchi System and a Finite State Classifier to discriminate using small data sets. We examine the discriminant ability as a function of data set size using publicly available skin lesion image data. While analysis of the data shows a high degree of correlation, the Mahalanobis-Taguchi System performed poorly when trying to discriminate between Malignant Melanoma and benign lesions. Alternately, the Finite State Classifiers developed using evolutionary computation obtained over 85% correct classification of the malignant and benign lesions using the image data sets.