基于深度强化学习的URLLC用户中心网络资源分配

Fajin Hu, Junhui Zhao, Jieyu Liao, Huan Zhang
{"title":"基于深度强化学习的URLLC用户中心网络资源分配","authors":"Fajin Hu, Junhui Zhao, Jieyu Liao, Huan Zhang","doi":"10.1109/WCSP55476.2022.10039329","DOIUrl":null,"url":null,"abstract":"In this paper, we solve the resource allocation problem by deep reinforcement learning (DRL) for diverse ultra-reliable low-latency communication (URLLC) services under the user-centric downlink transmission. Firstly, to meet the constraint of reliability, we model the channel decoding error rate by using the finite blocklength coding (FBC) according to the short packet characteristics of URLLC services. Then, we model the queue of different URLLC services in the temporal dimension to describe the delay violation problem. Furthermore, we adopt the DRL scheme that transforms the maximizing system availability and transmission efficiency problem into maximizing system reward problems. Simulation results show that the proposed algorithm achieves superior availability for diverse URLLC services compared with the baselines.","PeriodicalId":199421,"journal":{"name":"2022 14th International Conference on Wireless Communications and Signal Processing (WCSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Reinforcement Learning Based Resource Allocation for URLLC User-Centric Network\",\"authors\":\"Fajin Hu, Junhui Zhao, Jieyu Liao, Huan Zhang\",\"doi\":\"10.1109/WCSP55476.2022.10039329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we solve the resource allocation problem by deep reinforcement learning (DRL) for diverse ultra-reliable low-latency communication (URLLC) services under the user-centric downlink transmission. Firstly, to meet the constraint of reliability, we model the channel decoding error rate by using the finite blocklength coding (FBC) according to the short packet characteristics of URLLC services. Then, we model the queue of different URLLC services in the temporal dimension to describe the delay violation problem. Furthermore, we adopt the DRL scheme that transforms the maximizing system availability and transmission efficiency problem into maximizing system reward problems. Simulation results show that the proposed algorithm achieves superior availability for diverse URLLC services compared with the baselines.\",\"PeriodicalId\":199421,\"journal\":{\"name\":\"2022 14th International Conference on Wireless Communications and Signal Processing (WCSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 14th International Conference on Wireless Communications and Signal Processing (WCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCSP55476.2022.10039329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Wireless Communications and Signal Processing (WCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP55476.2022.10039329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文通过深度强化学习(DRL)解决了以用户为中心的下行传输下各种超可靠低延迟通信(URLLC)服务的资源分配问题。首先,为满足可靠性约束,根据URLLC业务的短包特性,采用有限块长编码(FBC)对信道译码错误率进行建模;然后,我们在时间维度上对不同的URLLC服务队列进行建模,以描述延迟冲突问题。采用DRL方案,将系统可用性和传输效率最大化问题转化为系统报酬最大化问题。仿真结果表明,与基线相比,该算法对不同的URLLC服务具有更高的可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Reinforcement Learning Based Resource Allocation for URLLC User-Centric Network
In this paper, we solve the resource allocation problem by deep reinforcement learning (DRL) for diverse ultra-reliable low-latency communication (URLLC) services under the user-centric downlink transmission. Firstly, to meet the constraint of reliability, we model the channel decoding error rate by using the finite blocklength coding (FBC) according to the short packet characteristics of URLLC services. Then, we model the queue of different URLLC services in the temporal dimension to describe the delay violation problem. Furthermore, we adopt the DRL scheme that transforms the maximizing system availability and transmission efficiency problem into maximizing system reward problems. Simulation results show that the proposed algorithm achieves superior availability for diverse URLLC services compared with the baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信