一秒GPS轨道:数值积分与插值的比较

Deepak Gaur, M. Prasad
{"title":"一秒GPS轨道:数值积分与插值的比较","authors":"Deepak Gaur, M. Prasad","doi":"10.1109/SPIN.2019.8711679","DOIUrl":null,"url":null,"abstract":"Precise positioning using the Global Positioning System (GPS) requires accurate knowledge of the satellite orbits. The International GNSS Service (IGS) distributes post-processed GPS satellite orbits that give the satellite positions at 15 minutes interval. For GPS applications involving high-rate (1 Hz) GPS, it is necessary to know the satellite positions at one second intervals. One approach of doing this is to interpolate the IGS precise orbit using a polynomial or trigonometric function. An alternative approach is to use the precise ephemeris distributed by the IGS to obtain the satellite position and velocity at the initial epoch and then perform numerical integration to determine the satellite position at one second intervals. JPL's GPS Inferred Positioning System/Orbit Analysis and Simulation Software (GIPSY/OASIS) is used to numerically integrate the orbit of a single GPS satellite in order to determine the position at one second intervals. A comparison of the numerically integrated positions and the interpolated positions shows that the numerically integrated satellite positions more closely match the IGS orbits than an orbit constructed using a trigonometric interpolation.","PeriodicalId":344030,"journal":{"name":"2019 6th International Conference on Signal Processing and Integrated Networks (SPIN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"One-Second GPS Orbits: A Comparison Between Numerical Integration and Interpolation\",\"authors\":\"Deepak Gaur, M. Prasad\",\"doi\":\"10.1109/SPIN.2019.8711679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precise positioning using the Global Positioning System (GPS) requires accurate knowledge of the satellite orbits. The International GNSS Service (IGS) distributes post-processed GPS satellite orbits that give the satellite positions at 15 minutes interval. For GPS applications involving high-rate (1 Hz) GPS, it is necessary to know the satellite positions at one second intervals. One approach of doing this is to interpolate the IGS precise orbit using a polynomial or trigonometric function. An alternative approach is to use the precise ephemeris distributed by the IGS to obtain the satellite position and velocity at the initial epoch and then perform numerical integration to determine the satellite position at one second intervals. JPL's GPS Inferred Positioning System/Orbit Analysis and Simulation Software (GIPSY/OASIS) is used to numerically integrate the orbit of a single GPS satellite in order to determine the position at one second intervals. A comparison of the numerically integrated positions and the interpolated positions shows that the numerically integrated satellite positions more closely match the IGS orbits than an orbit constructed using a trigonometric interpolation.\",\"PeriodicalId\":344030,\"journal\":{\"name\":\"2019 6th International Conference on Signal Processing and Integrated Networks (SPIN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 6th International Conference on Signal Processing and Integrated Networks (SPIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPIN.2019.8711679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 6th International Conference on Signal Processing and Integrated Networks (SPIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPIN.2019.8711679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

使用全球定位系统(GPS)进行精确定位需要对卫星轨道有准确的了解。国际GNSS服务(IGS)分配后处理的GPS卫星轨道,每隔15分钟提供卫星位置。对于涉及高速率(1hz) GPS的GPS应用,有必要每隔一秒了解卫星位置。一种方法是使用多项式或三角函数插值IGS精确轨道。另一种方法是利用IGS分布的精确星历表获得卫星在初始历元的位置和速度,然后每隔1秒进行数值积分确定卫星位置。喷气推进实验室的GPS推断定位系统/轨道分析和仿真软件(GIPSY/OASIS)用于对单个GPS卫星的轨道进行数值整合,以便每隔一秒确定位置。数值积分卫星位置与插值卫星位置的比较表明,数值积分卫星位置比三角插值卫星位置更接近IGS轨道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
One-Second GPS Orbits: A Comparison Between Numerical Integration and Interpolation
Precise positioning using the Global Positioning System (GPS) requires accurate knowledge of the satellite orbits. The International GNSS Service (IGS) distributes post-processed GPS satellite orbits that give the satellite positions at 15 minutes interval. For GPS applications involving high-rate (1 Hz) GPS, it is necessary to know the satellite positions at one second intervals. One approach of doing this is to interpolate the IGS precise orbit using a polynomial or trigonometric function. An alternative approach is to use the precise ephemeris distributed by the IGS to obtain the satellite position and velocity at the initial epoch and then perform numerical integration to determine the satellite position at one second intervals. JPL's GPS Inferred Positioning System/Orbit Analysis and Simulation Software (GIPSY/OASIS) is used to numerically integrate the orbit of a single GPS satellite in order to determine the position at one second intervals. A comparison of the numerically integrated positions and the interpolated positions shows that the numerically integrated satellite positions more closely match the IGS orbits than an orbit constructed using a trigonometric interpolation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信