基于复合样例的增量随机森林目标检测

Kai Ma, J. Ben-Arie
{"title":"基于复合样例的增量随机森林目标检测","authors":"Kai Ma, J. Ben-Arie","doi":"10.1109/ICPR.2014.417","DOIUrl":null,"url":null,"abstract":"This paper describes a new hybrid detection method that combines exemplar based approach with discriminative patch selection. More specifically, we applied a modified random forest for retrieval of input similar local patches of stored exemplars while rejecting background patches. A recursive algorithm based on dynamic programming 2D matching optimization is applied after the aforementioned patch retrieving stage in order to enforce geometric constraints of object patches. Our proposed approach demonstrates experimentally that it performs well while maintaining the capability for incremental learning.","PeriodicalId":142159,"journal":{"name":"2014 22nd International Conference on Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Compound Exemplar Based Object Detection by Incremental Random Forest\",\"authors\":\"Kai Ma, J. Ben-Arie\",\"doi\":\"10.1109/ICPR.2014.417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a new hybrid detection method that combines exemplar based approach with discriminative patch selection. More specifically, we applied a modified random forest for retrieval of input similar local patches of stored exemplars while rejecting background patches. A recursive algorithm based on dynamic programming 2D matching optimization is applied after the aforementioned patch retrieving stage in order to enforce geometric constraints of object patches. Our proposed approach demonstrates experimentally that it performs well while maintaining the capability for incremental learning.\",\"PeriodicalId\":142159,\"journal\":{\"name\":\"2014 22nd International Conference on Pattern Recognition\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2014.417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2014.417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了一种将基于样例的方法与判别式斑块选择相结合的混合检测方法。更具体地说,我们应用了一个改进的随机森林来检索存储样本的输入相似的局部补丁,同时拒绝背景补丁。在上述补丁检索阶段之后,采用基于动态规划的二维匹配优化递归算法来加强目标补丁的几何约束。实验表明,该方法在保持增量学习能力的同时表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compound Exemplar Based Object Detection by Incremental Random Forest
This paper describes a new hybrid detection method that combines exemplar based approach with discriminative patch selection. More specifically, we applied a modified random forest for retrieval of input similar local patches of stored exemplars while rejecting background patches. A recursive algorithm based on dynamic programming 2D matching optimization is applied after the aforementioned patch retrieving stage in order to enforce geometric constraints of object patches. Our proposed approach demonstrates experimentally that it performs well while maintaining the capability for incremental learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信