Sugang Li, A. Ashok, Yanyong Zhang, Chenren Xu, J. Lindqvist, M. Gruteser
{"title":"到底是谁的行动?使用独特的头部运动模式验证智能可穿戴设备","authors":"Sugang Li, A. Ashok, Yanyong Zhang, Chenren Xu, J. Lindqvist, M. Gruteser","doi":"10.1109/PERCOM.2016.7456514","DOIUrl":null,"url":null,"abstract":"In this paper, we present the design, implementation and evaluation of a user authentication system, Headbanger, for smart head-worn devices, through monitoring the user's unique head-movement patterns in response to an external audio stimulus. Compared to today's solutions, which primarily rely on indirect authentication mechanisms via the user's smartphone, thus cumbersome and susceptible to adversary intrusions, the proposed head-movement based authentication provides an accurate, robust, light-weight and convenient solution. Through extensive experimental evaluation with 95 participants, we show that our mechanism can accurately authenticate users with an average true acceptance rate of 95.57% while keeping the average false acceptance rate of 4.43%. We also show that even simple head-movement patterns are robust against imitation attacks. Finally, we demonstrate our authentication algorithm is rather light-weight: the overall processing latency on Google Glass is around 1.9 seconds.","PeriodicalId":275797,"journal":{"name":"2016 IEEE International Conference on Pervasive Computing and Communications (PerCom)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"102","resultStr":"{\"title\":\"Whose move is it anyway? Authenticating smart wearable devices using unique head movement patterns\",\"authors\":\"Sugang Li, A. Ashok, Yanyong Zhang, Chenren Xu, J. Lindqvist, M. Gruteser\",\"doi\":\"10.1109/PERCOM.2016.7456514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present the design, implementation and evaluation of a user authentication system, Headbanger, for smart head-worn devices, through monitoring the user's unique head-movement patterns in response to an external audio stimulus. Compared to today's solutions, which primarily rely on indirect authentication mechanisms via the user's smartphone, thus cumbersome and susceptible to adversary intrusions, the proposed head-movement based authentication provides an accurate, robust, light-weight and convenient solution. Through extensive experimental evaluation with 95 participants, we show that our mechanism can accurately authenticate users with an average true acceptance rate of 95.57% while keeping the average false acceptance rate of 4.43%. We also show that even simple head-movement patterns are robust against imitation attacks. Finally, we demonstrate our authentication algorithm is rather light-weight: the overall processing latency on Google Glass is around 1.9 seconds.\",\"PeriodicalId\":275797,\"journal\":{\"name\":\"2016 IEEE International Conference on Pervasive Computing and Communications (PerCom)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"102\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Pervasive Computing and Communications (PerCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PERCOM.2016.7456514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Pervasive Computing and Communications (PerCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOM.2016.7456514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Whose move is it anyway? Authenticating smart wearable devices using unique head movement patterns
In this paper, we present the design, implementation and evaluation of a user authentication system, Headbanger, for smart head-worn devices, through monitoring the user's unique head-movement patterns in response to an external audio stimulus. Compared to today's solutions, which primarily rely on indirect authentication mechanisms via the user's smartphone, thus cumbersome and susceptible to adversary intrusions, the proposed head-movement based authentication provides an accurate, robust, light-weight and convenient solution. Through extensive experimental evaluation with 95 participants, we show that our mechanism can accurately authenticate users with an average true acceptance rate of 95.57% while keeping the average false acceptance rate of 4.43%. We also show that even simple head-movement patterns are robust against imitation attacks. Finally, we demonstrate our authentication algorithm is rather light-weight: the overall processing latency on Google Glass is around 1.9 seconds.