ARMA信号的自调谐信息融合卡尔曼滤波及其收敛性

Jinfang Liu, Z. Deng
{"title":"ARMA信号的自调谐信息融合卡尔曼滤波及其收敛性","authors":"Jinfang Liu, Z. Deng","doi":"10.1109/WCICA.2010.5554233","DOIUrl":null,"url":null,"abstract":"For the multisensor autoregressive moving average (ARMA) signals with unknown model parameters and noise variances, using recursive instrumental variable (RIV) algorithm, the correlation method and the Gevers-Wouters algorithm with dead band, the information fusion estimators of model parameters and noise variances are presented. They have strong consistence. Then substituting them into the optimal fusion signal filter weighted by scalars, a self-tuning information fusion Kalman filter for the ARMA signal is presented. Further, applying the dynamic error system analysis method, it is rigorously proved that the self-tuning fused Kalman signal filter converges to the optimal fused Kalman signal filter in a realization, so that it has asymptotic optimality. A simulation example shows its effectiveness.","PeriodicalId":315420,"journal":{"name":"2010 8th World Congress on Intelligent Control and Automation","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Self-tuning information fusion Kalman filter for the ARMA signal and its convergence\",\"authors\":\"Jinfang Liu, Z. Deng\",\"doi\":\"10.1109/WCICA.2010.5554233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the multisensor autoregressive moving average (ARMA) signals with unknown model parameters and noise variances, using recursive instrumental variable (RIV) algorithm, the correlation method and the Gevers-Wouters algorithm with dead band, the information fusion estimators of model parameters and noise variances are presented. They have strong consistence. Then substituting them into the optimal fusion signal filter weighted by scalars, a self-tuning information fusion Kalman filter for the ARMA signal is presented. Further, applying the dynamic error system analysis method, it is rigorously proved that the self-tuning fused Kalman signal filter converges to the optimal fused Kalman signal filter in a realization, so that it has asymptotic optimality. A simulation example shows its effectiveness.\",\"PeriodicalId\":315420,\"journal\":{\"name\":\"2010 8th World Congress on Intelligent Control and Automation\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 8th World Congress on Intelligent Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCICA.2010.5554233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 8th World Congress on Intelligent Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCICA.2010.5554233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

针对模型参数和噪声方差未知的多传感器自回归移动平均(ARMA)信号,采用递归工具变量(RIV)算法、相关法和带死区Gevers-Wouters算法,给出了模型参数和噪声方差的信息融合估计。他们有很强的一致性。然后将其代入以标量加权的最优融合信号滤波器中,给出了ARMA信号的自调谐信息融合卡尔曼滤波器。进一步,应用动态误差系统分析方法,严格证明了自调谐融合卡尔曼信号滤波器在一个实现中收敛于最优融合卡尔曼信号滤波器,使其具有渐近最优性。仿真实例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-tuning information fusion Kalman filter for the ARMA signal and its convergence
For the multisensor autoregressive moving average (ARMA) signals with unknown model parameters and noise variances, using recursive instrumental variable (RIV) algorithm, the correlation method and the Gevers-Wouters algorithm with dead band, the information fusion estimators of model parameters and noise variances are presented. They have strong consistence. Then substituting them into the optimal fusion signal filter weighted by scalars, a self-tuning information fusion Kalman filter for the ARMA signal is presented. Further, applying the dynamic error system analysis method, it is rigorously proved that the self-tuning fused Kalman signal filter converges to the optimal fused Kalman signal filter in a realization, so that it has asymptotic optimality. A simulation example shows its effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信