一维双调和方程的Haar小波数值解

Zhi Shi, Julian Han
{"title":"一维双调和方程的Haar小波数值解","authors":"Zhi Shi, Julian Han","doi":"10.1109/ICWAPR.2009.5207423","DOIUrl":null,"url":null,"abstract":"In this paper, an operational matrix of integration based on Haar wavelets is introduced, and a procedure for applying the matrix to solve biharmonic equations is formulated. The technique can be used for solving boundary value problems of one-dimensional biharmonic equations. The efficiency of the proposed method is tested with the aid of an example.","PeriodicalId":424264,"journal":{"name":"2009 International Conference on Wavelet Analysis and Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Numerical solution of one-dimensional biharmonic equations using Haar wavelets\",\"authors\":\"Zhi Shi, Julian Han\",\"doi\":\"10.1109/ICWAPR.2009.5207423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an operational matrix of integration based on Haar wavelets is introduced, and a procedure for applying the matrix to solve biharmonic equations is formulated. The technique can be used for solving boundary value problems of one-dimensional biharmonic equations. The efficiency of the proposed method is tested with the aid of an example.\",\"PeriodicalId\":424264,\"journal\":{\"name\":\"2009 International Conference on Wavelet Analysis and Pattern Recognition\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Wavelet Analysis and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR.2009.5207423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2009.5207423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文介绍了一种基于哈尔小波的积分运算矩阵,并给出了应用该矩阵求解双调和方程的方法。该方法可用于求解一维双调和方程的边值问题。通过算例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical solution of one-dimensional biharmonic equations using Haar wavelets
In this paper, an operational matrix of integration based on Haar wavelets is introduced, and a procedure for applying the matrix to solve biharmonic equations is formulated. The technique can be used for solving boundary value problems of one-dimensional biharmonic equations. The efficiency of the proposed method is tested with the aid of an example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信