用于自动目标识别的红外图像复杂度度量

Xiaotian Wang, Wan-chao Ma, Kai Zhang, Jie Yan
{"title":"用于自动目标识别的红外图像复杂度度量","authors":"Xiaotian Wang, Wan-chao Ma, Kai Zhang, Jie Yan","doi":"10.1109/ICCIA.2018.00040","DOIUrl":null,"url":null,"abstract":"Image complexity metric is an important part of automatic target recognition(ATR) performance evaluation, the relationship between infrared image complexity metric and target recognition is studied, which is important for infrared imaging system performance prediction and evaluation and the performance comparison of target recognition algorithms. Aiming at this problem, an automatic target recognition infrared image complexity metric method is proposed. Firstly, the infrared imaging mechanism is analyzed to find the main factors affecting target recognition. The image complexity is defined from the similarity degree of target and clutter and the submergence degree of target and clutter, which clarify for the influence of target recognition. To increase the universality of image complexity, the concept of feature space was introduced. Finally, the weighted processing and statistical formula F1-Score is used to combine the three indexes, the complexity of the frame image is established. The experimental results show that the proposed metric is more valid than traditional metrics, such as SV and SCR, has a strong correlation with automatic target recognition algorithm, while the values are in better agreement with the actual situation.","PeriodicalId":297098,"journal":{"name":"2018 3rd International Conference on Computational Intelligence and Applications (ICCIA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Complexity Metric of Infrared Image for Automatic Target Recognition\",\"authors\":\"Xiaotian Wang, Wan-chao Ma, Kai Zhang, Jie Yan\",\"doi\":\"10.1109/ICCIA.2018.00040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image complexity metric is an important part of automatic target recognition(ATR) performance evaluation, the relationship between infrared image complexity metric and target recognition is studied, which is important for infrared imaging system performance prediction and evaluation and the performance comparison of target recognition algorithms. Aiming at this problem, an automatic target recognition infrared image complexity metric method is proposed. Firstly, the infrared imaging mechanism is analyzed to find the main factors affecting target recognition. The image complexity is defined from the similarity degree of target and clutter and the submergence degree of target and clutter, which clarify for the influence of target recognition. To increase the universality of image complexity, the concept of feature space was introduced. Finally, the weighted processing and statistical formula F1-Score is used to combine the three indexes, the complexity of the frame image is established. The experimental results show that the proposed metric is more valid than traditional metrics, such as SV and SCR, has a strong correlation with automatic target recognition algorithm, while the values are in better agreement with the actual situation.\",\"PeriodicalId\":297098,\"journal\":{\"name\":\"2018 3rd International Conference on Computational Intelligence and Applications (ICCIA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 3rd International Conference on Computational Intelligence and Applications (ICCIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIA.2018.00040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 3rd International Conference on Computational Intelligence and Applications (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIA.2018.00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

图像复杂度度量是自动目标识别(ATR)性能评价的重要组成部分,研究红外图像复杂度度量与目标识别的关系,对红外成像系统的性能预测与评价以及目标识别算法的性能比较具有重要意义。针对这一问题,提出了一种红外图像自动目标识别复杂度度量方法。首先,分析红外成像机理,找出影响目标识别的主要因素。从目标与杂波的相似程度和目标与杂波的淹没程度来定义图像复杂度,明确了对目标识别的影响。为了提高图像复杂度的普适性,引入了特征空间的概念。最后,利用加权处理和统计公式F1-Score对三个指标进行组合,建立帧图像的复杂度。实验结果表明,该度量比传统的SV、SCR等度量更有效,与自动目标识别算法有较强的相关性,且数值更符合实际情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complexity Metric of Infrared Image for Automatic Target Recognition
Image complexity metric is an important part of automatic target recognition(ATR) performance evaluation, the relationship between infrared image complexity metric and target recognition is studied, which is important for infrared imaging system performance prediction and evaluation and the performance comparison of target recognition algorithms. Aiming at this problem, an automatic target recognition infrared image complexity metric method is proposed. Firstly, the infrared imaging mechanism is analyzed to find the main factors affecting target recognition. The image complexity is defined from the similarity degree of target and clutter and the submergence degree of target and clutter, which clarify for the influence of target recognition. To increase the universality of image complexity, the concept of feature space was introduced. Finally, the weighted processing and statistical formula F1-Score is used to combine the three indexes, the complexity of the frame image is established. The experimental results show that the proposed metric is more valid than traditional metrics, such as SV and SCR, has a strong correlation with automatic target recognition algorithm, while the values are in better agreement with the actual situation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信