远程医疗中人体运动分析的动态协同深度推理框架

Michele Boldo, D. Carra, D. Quaglia, N. Bombieri
{"title":"远程医疗中人体运动分析的动态协同深度推理框架","authors":"Michele Boldo, D. Carra, D. Quaglia, N. Bombieri","doi":"10.1109/EDGE60047.2023.00043","DOIUrl":null,"url":null,"abstract":"Human pose estimation software has reached high levels of accuracy in extrapolating 3D spatial information of human keypoints from images and videos. Nevertheless, deploying such intelligent video analytic at a distance to infer kinematic data for clinical applications requires the system to satisfy, beside spatial accuracy, more stringent extra-functional constraints. These include real-time performance and robustness to the environment variability (i.e., computational workload, network bandwidth). In this paper we address these challenges by proposing a framework that implements accurate human motion analysis at a distance through collaborative and adaptive Edge-Cloud deep inference. We show how the framework adapts to edge workload variations and communication issues (e.g., delay and bandwidth variability) to preserve the global system accuracy. The paper presents the results obtained with two large datasets in which the framework accuracy and robustness are compared with a marker-based infra-red motion capture system.","PeriodicalId":369407,"journal":{"name":"2023 IEEE International Conference on Edge Computing and Communications (EDGE)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Dynamic and Collaborative Deep Inference Framework for Human Motion Analysis in Telemedicine\",\"authors\":\"Michele Boldo, D. Carra, D. Quaglia, N. Bombieri\",\"doi\":\"10.1109/EDGE60047.2023.00043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human pose estimation software has reached high levels of accuracy in extrapolating 3D spatial information of human keypoints from images and videos. Nevertheless, deploying such intelligent video analytic at a distance to infer kinematic data for clinical applications requires the system to satisfy, beside spatial accuracy, more stringent extra-functional constraints. These include real-time performance and robustness to the environment variability (i.e., computational workload, network bandwidth). In this paper we address these challenges by proposing a framework that implements accurate human motion analysis at a distance through collaborative and adaptive Edge-Cloud deep inference. We show how the framework adapts to edge workload variations and communication issues (e.g., delay and bandwidth variability) to preserve the global system accuracy. The paper presents the results obtained with two large datasets in which the framework accuracy and robustness are compared with a marker-based infra-red motion capture system.\",\"PeriodicalId\":369407,\"journal\":{\"name\":\"2023 IEEE International Conference on Edge Computing and Communications (EDGE)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Edge Computing and Communications (EDGE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDGE60047.2023.00043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Edge Computing and Communications (EDGE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDGE60047.2023.00043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人体姿态估计软件在从图像和视频中推断人体关键点的三维空间信息方面已经达到了很高的精度。然而,部署这种远程智能视频分析来推断临床应用的运动学数据,除了空间精度外,还需要系统满足更严格的功能外约束。这些包括实时性能和对环境可变性的鲁棒性(即计算工作负载、网络带宽)。在本文中,我们通过提出一个框架来解决这些挑战,该框架通过协作和自适应边缘云深度推理在远处实现准确的人体运动分析。我们展示了该框架如何适应边缘工作负载变化和通信问题(例如,延迟和带宽可变性),以保持全局系统准确性。本文给出了两个大数据集的结果,并将框架的精度和鲁棒性与基于标记的红外运动捕捉系统进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Dynamic and Collaborative Deep Inference Framework for Human Motion Analysis in Telemedicine
Human pose estimation software has reached high levels of accuracy in extrapolating 3D spatial information of human keypoints from images and videos. Nevertheless, deploying such intelligent video analytic at a distance to infer kinematic data for clinical applications requires the system to satisfy, beside spatial accuracy, more stringent extra-functional constraints. These include real-time performance and robustness to the environment variability (i.e., computational workload, network bandwidth). In this paper we address these challenges by proposing a framework that implements accurate human motion analysis at a distance through collaborative and adaptive Edge-Cloud deep inference. We show how the framework adapts to edge workload variations and communication issues (e.g., delay and bandwidth variability) to preserve the global system accuracy. The paper presents the results obtained with two large datasets in which the framework accuracy and robustness are compared with a marker-based infra-red motion capture system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信