{"title":"远程医疗中人体运动分析的动态协同深度推理框架","authors":"Michele Boldo, D. Carra, D. Quaglia, N. Bombieri","doi":"10.1109/EDGE60047.2023.00043","DOIUrl":null,"url":null,"abstract":"Human pose estimation software has reached high levels of accuracy in extrapolating 3D spatial information of human keypoints from images and videos. Nevertheless, deploying such intelligent video analytic at a distance to infer kinematic data for clinical applications requires the system to satisfy, beside spatial accuracy, more stringent extra-functional constraints. These include real-time performance and robustness to the environment variability (i.e., computational workload, network bandwidth). In this paper we address these challenges by proposing a framework that implements accurate human motion analysis at a distance through collaborative and adaptive Edge-Cloud deep inference. We show how the framework adapts to edge workload variations and communication issues (e.g., delay and bandwidth variability) to preserve the global system accuracy. The paper presents the results obtained with two large datasets in which the framework accuracy and robustness are compared with a marker-based infra-red motion capture system.","PeriodicalId":369407,"journal":{"name":"2023 IEEE International Conference on Edge Computing and Communications (EDGE)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Dynamic and Collaborative Deep Inference Framework for Human Motion Analysis in Telemedicine\",\"authors\":\"Michele Boldo, D. Carra, D. Quaglia, N. Bombieri\",\"doi\":\"10.1109/EDGE60047.2023.00043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human pose estimation software has reached high levels of accuracy in extrapolating 3D spatial information of human keypoints from images and videos. Nevertheless, deploying such intelligent video analytic at a distance to infer kinematic data for clinical applications requires the system to satisfy, beside spatial accuracy, more stringent extra-functional constraints. These include real-time performance and robustness to the environment variability (i.e., computational workload, network bandwidth). In this paper we address these challenges by proposing a framework that implements accurate human motion analysis at a distance through collaborative and adaptive Edge-Cloud deep inference. We show how the framework adapts to edge workload variations and communication issues (e.g., delay and bandwidth variability) to preserve the global system accuracy. The paper presents the results obtained with two large datasets in which the framework accuracy and robustness are compared with a marker-based infra-red motion capture system.\",\"PeriodicalId\":369407,\"journal\":{\"name\":\"2023 IEEE International Conference on Edge Computing and Communications (EDGE)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Edge Computing and Communications (EDGE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDGE60047.2023.00043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Edge Computing and Communications (EDGE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDGE60047.2023.00043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Dynamic and Collaborative Deep Inference Framework for Human Motion Analysis in Telemedicine
Human pose estimation software has reached high levels of accuracy in extrapolating 3D spatial information of human keypoints from images and videos. Nevertheless, deploying such intelligent video analytic at a distance to infer kinematic data for clinical applications requires the system to satisfy, beside spatial accuracy, more stringent extra-functional constraints. These include real-time performance and robustness to the environment variability (i.e., computational workload, network bandwidth). In this paper we address these challenges by proposing a framework that implements accurate human motion analysis at a distance through collaborative and adaptive Edge-Cloud deep inference. We show how the framework adapts to edge workload variations and communication issues (e.g., delay and bandwidth variability) to preserve the global system accuracy. The paper presents the results obtained with two large datasets in which the framework accuracy and robustness are compared with a marker-based infra-red motion capture system.