多目标检测前跟踪的高斯混合概率假设密度平滑算法

Zhu Hongpeng, Huang Yong, Jiang Baichen, Guan Jian
{"title":"多目标检测前跟踪的高斯混合概率假设密度平滑算法","authors":"Zhu Hongpeng, Huang Yong, Jiang Baichen, Guan Jian","doi":"10.1109/SIPROCESS.2016.7888346","DOIUrl":null,"url":null,"abstract":"When the signal-to-noise ratio (SNR) is reduced in case of track-before-detect (TBD) for weak target detection, the TBD algorithm based on Gaussian mixture probability hypothesis density (GM-PHD) filter cannot estimate the number or status of targets accurately. In order to solve this problem, a TBD algorithm based on GM-PHD smoothing filter (SGM-PHD-TBD) is proposed. Within the framework of TBD standard observation model, the algorithm employs smooth recursive method, using quantities of measurement data to smooth the filtering results. The simulation result shows that the proposed algorithm is better than the GM-PHD-TBD algorithm under low SNR, especially in the accuracy of target number estimation and the precision of target status estimation.","PeriodicalId":142802,"journal":{"name":"2016 IEEE International Conference on Signal and Image Processing (ICSIP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Gaussian mixture probability hypothesis density smoothing algorithm for multi-target track-before-detect\",\"authors\":\"Zhu Hongpeng, Huang Yong, Jiang Baichen, Guan Jian\",\"doi\":\"10.1109/SIPROCESS.2016.7888346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When the signal-to-noise ratio (SNR) is reduced in case of track-before-detect (TBD) for weak target detection, the TBD algorithm based on Gaussian mixture probability hypothesis density (GM-PHD) filter cannot estimate the number or status of targets accurately. In order to solve this problem, a TBD algorithm based on GM-PHD smoothing filter (SGM-PHD-TBD) is proposed. Within the framework of TBD standard observation model, the algorithm employs smooth recursive method, using quantities of measurement data to smooth the filtering results. The simulation result shows that the proposed algorithm is better than the GM-PHD-TBD algorithm under low SNR, especially in the accuracy of target number estimation and the precision of target status estimation.\",\"PeriodicalId\":142802,\"journal\":{\"name\":\"2016 IEEE International Conference on Signal and Image Processing (ICSIP)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Signal and Image Processing (ICSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIPROCESS.2016.7888346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Signal and Image Processing (ICSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPROCESS.2016.7888346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在检测前跟踪(track-before-detect, TBD)算法用于弱目标检测的情况下,当信噪比降低时,基于高斯混合概率假设密度(GM-PHD)滤波的TBD算法无法准确估计目标的数量或状态。为了解决这一问题,提出了一种基于GM-PHD平滑滤波器的TBD算法(SGM-PHD-TBD)。该算法在TBD标准观测模型框架内,采用平滑递归方法,利用大量的测量数据对滤波结果进行平滑处理。仿真结果表明,该算法在低信噪比下优于GM-PHD-TBD算法,特别是在目标数估计精度和目标状态估计精度方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Gaussian mixture probability hypothesis density smoothing algorithm for multi-target track-before-detect
When the signal-to-noise ratio (SNR) is reduced in case of track-before-detect (TBD) for weak target detection, the TBD algorithm based on Gaussian mixture probability hypothesis density (GM-PHD) filter cannot estimate the number or status of targets accurately. In order to solve this problem, a TBD algorithm based on GM-PHD smoothing filter (SGM-PHD-TBD) is proposed. Within the framework of TBD standard observation model, the algorithm employs smooth recursive method, using quantities of measurement data to smooth the filtering results. The simulation result shows that the proposed algorithm is better than the GM-PHD-TBD algorithm under low SNR, especially in the accuracy of target number estimation and the precision of target status estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信