基于内容的胃图像检索的有效深度学习模型

Mona Singh, M. K. Singh
{"title":"基于内容的胃图像检索的有效深度学习模型","authors":"Mona Singh, M. K. Singh","doi":"10.1109/ISCON57294.2023.10112189","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a feature combination, also known as feature fusion, for improving performance in content-based gastric image retrieval (CBGIR). This study provides a CBGIR system that retrieves images by combining ResNet-18 and ResNet-50 information and finally, the Euclidean distance metric is evaluated for similarity measurement. The proposed approach is also compared to different deep learning techniques such as AlexNet, VGGs (VGG-16 & VGG-19), GoogleNet, SqueezeNet, DarkNet-19 models. The proposed method was examined on the KVASIR database with 4000 images and S different classes. We get the optimum results as average precision of 95.44% and average recall of 19.09 on a scale of 20 using the proposed deep learning model and Euclidean distance metric.","PeriodicalId":280183,"journal":{"name":"2023 6th International Conference on Information Systems and Computer Networks (ISCON)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Effective Deep Learning Model for Content-Based Gastric Image Retrieval\",\"authors\":\"Mona Singh, M. K. Singh\",\"doi\":\"10.1109/ISCON57294.2023.10112189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a feature combination, also known as feature fusion, for improving performance in content-based gastric image retrieval (CBGIR). This study provides a CBGIR system that retrieves images by combining ResNet-18 and ResNet-50 information and finally, the Euclidean distance metric is evaluated for similarity measurement. The proposed approach is also compared to different deep learning techniques such as AlexNet, VGGs (VGG-16 & VGG-19), GoogleNet, SqueezeNet, DarkNet-19 models. The proposed method was examined on the KVASIR database with 4000 images and S different classes. We get the optimum results as average precision of 95.44% and average recall of 19.09 on a scale of 20 using the proposed deep learning model and Euclidean distance metric.\",\"PeriodicalId\":280183,\"journal\":{\"name\":\"2023 6th International Conference on Information Systems and Computer Networks (ISCON)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 6th International Conference on Information Systems and Computer Networks (ISCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCON57294.2023.10112189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 6th International Conference on Information Systems and Computer Networks (ISCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCON57294.2023.10112189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种特征组合,也称为特征融合,以提高基于内容的胃图像检索(CBGIR)的性能。本研究提供了一个结合ResNet-18和ResNet-50信息检索图像的CBGIR系统,最后评估欧几里得距离度量进行相似性度量。提出的方法还与不同的深度学习技术,如AlexNet, vgg (VGG-16和VGG-19), GoogleNet, SqueezeNet, DarkNet-19模型进行了比较。在KVASIR数据库的4000幅图像和5个不同的分类上对该方法进行了验证。使用深度学习模型和欧几里得距离度量,在20分的范围内,平均准确率为95.44%,平均召回率为19.09。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Effective Deep Learning Model for Content-Based Gastric Image Retrieval
In this paper, we propose a feature combination, also known as feature fusion, for improving performance in content-based gastric image retrieval (CBGIR). This study provides a CBGIR system that retrieves images by combining ResNet-18 and ResNet-50 information and finally, the Euclidean distance metric is evaluated for similarity measurement. The proposed approach is also compared to different deep learning techniques such as AlexNet, VGGs (VGG-16 & VGG-19), GoogleNet, SqueezeNet, DarkNet-19 models. The proposed method was examined on the KVASIR database with 4000 images and S different classes. We get the optimum results as average precision of 95.44% and average recall of 19.09 on a scale of 20 using the proposed deep learning model and Euclidean distance metric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信