增材制造聚对苯二甲酸乙二醇酯(pet)材料分层缺陷对抗弯性能影响的数值与实验研究

A. Doğru, Ayberk Sözen, G. Neşer, M. Seydibeyoğlu
{"title":"增材制造聚对苯二甲酸乙二醇酯(pet)材料分层缺陷对抗弯性能影响的数值与实验研究","authors":"A. Doğru, Ayberk Sözen, G. Neşer, M. Seydibeyoğlu","doi":"10.46519/ij3dptdi.1098903","DOIUrl":null,"url":null,"abstract":"Polyethylene terephthalate (PET) material, which is widely used in the packaging industry due to its thermal and mechanical properties, high chemical resistance, and low gas permeability, is among the most widely used polymer materials in the world. These properties have made their use in additive manufacturing methods widespread. Determining how some common additive manufacturing defects affect the products produced by these methods will increase the adoption of these technologies in the final product production. In this study, the investigation of the effect of layer non-joining defect called delamination on the impact strength of PET material produced by additive manufacturing method at different layer thicknesses was carried out experimentally and numerically. The effects to flexural stress on the artificially created layer adhesion defect on the middle layers of the parts produced and modeled with a layer thickness of 0.1/0.2/0.3mm were investigated. It has been observed that the increase in layer thickness decreases flexural strength. In addition, while the flexural strength of the specimens containing delamination decreased, the increase in layer thickness accelerated this decrease.","PeriodicalId":358444,"journal":{"name":"International Journal of 3D Printing Technologies and Digital Industry","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NUMERICAL AND EXPERIMENTAL INVESTIGATION OF THE EFFECT OF DELAMINATION DEFECT AT MATERIALS OF POLYETHYLENE TEREPHTHALATE (PET)PRODUCED BY ADDITIVE MANUFACTURING ON FLEXURAL RESISTANCE\",\"authors\":\"A. Doğru, Ayberk Sözen, G. Neşer, M. Seydibeyoğlu\",\"doi\":\"10.46519/ij3dptdi.1098903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polyethylene terephthalate (PET) material, which is widely used in the packaging industry due to its thermal and mechanical properties, high chemical resistance, and low gas permeability, is among the most widely used polymer materials in the world. These properties have made their use in additive manufacturing methods widespread. Determining how some common additive manufacturing defects affect the products produced by these methods will increase the adoption of these technologies in the final product production. In this study, the investigation of the effect of layer non-joining defect called delamination on the impact strength of PET material produced by additive manufacturing method at different layer thicknesses was carried out experimentally and numerically. The effects to flexural stress on the artificially created layer adhesion defect on the middle layers of the parts produced and modeled with a layer thickness of 0.1/0.2/0.3mm were investigated. It has been observed that the increase in layer thickness decreases flexural strength. In addition, while the flexural strength of the specimens containing delamination decreased, the increase in layer thickness accelerated this decrease.\",\"PeriodicalId\":358444,\"journal\":{\"name\":\"International Journal of 3D Printing Technologies and Digital Industry\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of 3D Printing Technologies and Digital Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46519/ij3dptdi.1098903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of 3D Printing Technologies and Digital Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46519/ij3dptdi.1098903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

聚对苯二甲酸乙二醇酯(PET)材料由于其热学和机械性能、高耐化学性和低透气性而广泛应用于包装工业,是世界上应用最广泛的高分子材料之一。这些特性使得它们在增材制造方法中得到了广泛的应用。确定一些常见的增材制造缺陷如何影响通过这些方法生产的产品,将增加这些技术在最终产品生产中的采用。本文采用实验和数值方法,研究了不同层厚的增材制造方法制备的PET材料中,层间不连接缺陷(称为脱层)对其冲击强度的影响。研究了层厚为0.1/0.2/0.3mm的零件在生产和建模过程中,人为制造的中间层附着缺陷受弯曲应力的影响。研究发现,随着层厚的增加,抗弯强度降低。此外,虽然存在分层的试件抗弯强度下降,但层厚的增加加速了这种下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NUMERICAL AND EXPERIMENTAL INVESTIGATION OF THE EFFECT OF DELAMINATION DEFECT AT MATERIALS OF POLYETHYLENE TEREPHTHALATE (PET)PRODUCED BY ADDITIVE MANUFACTURING ON FLEXURAL RESISTANCE
Polyethylene terephthalate (PET) material, which is widely used in the packaging industry due to its thermal and mechanical properties, high chemical resistance, and low gas permeability, is among the most widely used polymer materials in the world. These properties have made their use in additive manufacturing methods widespread. Determining how some common additive manufacturing defects affect the products produced by these methods will increase the adoption of these technologies in the final product production. In this study, the investigation of the effect of layer non-joining defect called delamination on the impact strength of PET material produced by additive manufacturing method at different layer thicknesses was carried out experimentally and numerically. The effects to flexural stress on the artificially created layer adhesion defect on the middle layers of the parts produced and modeled with a layer thickness of 0.1/0.2/0.3mm were investigated. It has been observed that the increase in layer thickness decreases flexural strength. In addition, while the flexural strength of the specimens containing delamination decreased, the increase in layer thickness accelerated this decrease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信