{"title":"用于三维注视点估计的头戴式设备","authors":"Morten Lidegaard, D. Hansen, N. Krüger","doi":"10.1145/2578153.2578163","DOIUrl":null,"url":null,"abstract":"This paper presents a fully calibrated extended geometric approach for gaze estimation in three dimensions (3D). The methodology is based on a geometric approach utilising a fully calibrated binocular setup constructed as a head-mounted system. The approach is based on utilisation of two ordinary web-cameras for each eye and 6D magnetic sensors allowing free head movements in 3D. Evaluation of initial experiments indicate comparable results to current state-of-the-art on estimating gaze in 3D. Initial results show an RMS error of 39-50 mm in the depth dimension and even smaller in the horizontal and vertical dimensions regarding fixations. However, even though the workspace is limited, the fact that the system is designed as a head-mounted device, the workspace volume is relatively positioned to the pose of the device. Hence gaze can be estimated in 3D with relatively free head-movements with external reference to a world coordinate system and is therefore offering flexibility and movability within certain constraints.","PeriodicalId":142459,"journal":{"name":"Proceedings of the Symposium on Eye Tracking Research and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Head mounted device for point-of-gaze estimation in three dimensions\",\"authors\":\"Morten Lidegaard, D. Hansen, N. Krüger\",\"doi\":\"10.1145/2578153.2578163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a fully calibrated extended geometric approach for gaze estimation in three dimensions (3D). The methodology is based on a geometric approach utilising a fully calibrated binocular setup constructed as a head-mounted system. The approach is based on utilisation of two ordinary web-cameras for each eye and 6D magnetic sensors allowing free head movements in 3D. Evaluation of initial experiments indicate comparable results to current state-of-the-art on estimating gaze in 3D. Initial results show an RMS error of 39-50 mm in the depth dimension and even smaller in the horizontal and vertical dimensions regarding fixations. However, even though the workspace is limited, the fact that the system is designed as a head-mounted device, the workspace volume is relatively positioned to the pose of the device. Hence gaze can be estimated in 3D with relatively free head-movements with external reference to a world coordinate system and is therefore offering flexibility and movability within certain constraints.\",\"PeriodicalId\":142459,\"journal\":{\"name\":\"Proceedings of the Symposium on Eye Tracking Research and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Symposium on Eye Tracking Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2578153.2578163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Symposium on Eye Tracking Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2578153.2578163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Head mounted device for point-of-gaze estimation in three dimensions
This paper presents a fully calibrated extended geometric approach for gaze estimation in three dimensions (3D). The methodology is based on a geometric approach utilising a fully calibrated binocular setup constructed as a head-mounted system. The approach is based on utilisation of two ordinary web-cameras for each eye and 6D magnetic sensors allowing free head movements in 3D. Evaluation of initial experiments indicate comparable results to current state-of-the-art on estimating gaze in 3D. Initial results show an RMS error of 39-50 mm in the depth dimension and even smaller in the horizontal and vertical dimensions regarding fixations. However, even though the workspace is limited, the fact that the system is designed as a head-mounted device, the workspace volume is relatively positioned to the pose of the device. Hence gaze can be estimated in 3D with relatively free head-movements with external reference to a world coordinate system and is therefore offering flexibility and movability within certain constraints.