分布式推荐系统架构

P. Giannikopoulos, C. Vassilakis
{"title":"分布式推荐系统架构","authors":"P. Giannikopoulos, C. Vassilakis","doi":"10.1504/IJWET.2012.048517","DOIUrl":null,"url":null,"abstract":"In contemporary internet architectures, including server farms and blog aggregators, web log data may be scattered among multiple cooperating peers. In order to perform content personalisation through provision of recommendations on such architectures, it is necessary to employ a recommendation algorithm; however, the majority of such algorithms are centralised, necessitating excessive data transfers and exhibiting performance issues when the number of users or the volume of data increase. In this paper, we propose an approach where the clickstream information is distributed to a number of peers, which cooperate for discovering frequent patterns and for generating recommendations, introducing: a) architectures that allow the distribution of both the content and the clickstream database to the participating peers; b) algorithms that allow collaborative decisions on the recommendations to the users, in the presence of scattered log information. The proposed approach may be employed in various domains, including digital libraries, social data, server farms and content distribution networks.","PeriodicalId":396746,"journal":{"name":"Int. J. Web Eng. Technol.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A distributed recommender system architecture\",\"authors\":\"P. Giannikopoulos, C. Vassilakis\",\"doi\":\"10.1504/IJWET.2012.048517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In contemporary internet architectures, including server farms and blog aggregators, web log data may be scattered among multiple cooperating peers. In order to perform content personalisation through provision of recommendations on such architectures, it is necessary to employ a recommendation algorithm; however, the majority of such algorithms are centralised, necessitating excessive data transfers and exhibiting performance issues when the number of users or the volume of data increase. In this paper, we propose an approach where the clickstream information is distributed to a number of peers, which cooperate for discovering frequent patterns and for generating recommendations, introducing: a) architectures that allow the distribution of both the content and the clickstream database to the participating peers; b) algorithms that allow collaborative decisions on the recommendations to the users, in the presence of scattered log information. The proposed approach may be employed in various domains, including digital libraries, social data, server farms and content distribution networks.\",\"PeriodicalId\":396746,\"journal\":{\"name\":\"Int. J. Web Eng. Technol.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Web Eng. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJWET.2012.048517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Web Eng. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJWET.2012.048517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在当代的互联网架构中,包括服务器群和博客聚合器,网络日志数据可能分散在多个合作的对等体中。为了通过在这些架构上提供推荐来执行内容个性化,有必要采用推荐算法;然而,大多数这样的算法是集中式的,需要过多的数据传输,并且在用户数量或数据量增加时表现出性能问题。在本文中,我们提出了一种方法,将点击流信息分发给许多对等点,这些对等点合作发现频繁的模式并生成推荐,引入:a)允许将内容和点击流数据库分发给参与的对等点的架构;B)在存在分散日志信息的情况下,允许对用户的建议进行协作决策的算法。所提出的方法可用于各种领域,包括数字图书馆、社会数据、服务器场和内容分发网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A distributed recommender system architecture
In contemporary internet architectures, including server farms and blog aggregators, web log data may be scattered among multiple cooperating peers. In order to perform content personalisation through provision of recommendations on such architectures, it is necessary to employ a recommendation algorithm; however, the majority of such algorithms are centralised, necessitating excessive data transfers and exhibiting performance issues when the number of users or the volume of data increase. In this paper, we propose an approach where the clickstream information is distributed to a number of peers, which cooperate for discovering frequent patterns and for generating recommendations, introducing: a) architectures that allow the distribution of both the content and the clickstream database to the participating peers; b) algorithms that allow collaborative decisions on the recommendations to the users, in the presence of scattered log information. The proposed approach may be employed in various domains, including digital libraries, social data, server farms and content distribution networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信