局部爆炸的时变参数模型

F. Blasques, S. J. Koopman, Marc Nientker
{"title":"局部爆炸的时变参数模型","authors":"F. Blasques, S. J. Koopman, Marc Nientker","doi":"10.2139/ssrn.3285850","DOIUrl":null,"url":null,"abstract":"Locally explosive behavior is observed in many economic and financial time series when bubbles are formed. We introduce a time-varying parameter model that is capable of describing this behavior in time series data. Our proposed model can be used to predict the emergence, existence and burst of bubbles. We adopt a flexible observation driven model specification that allows for different bubble shapes and behavior. We establish stationarity, ergodicity, and bounded moments of the data generated by our model. Furthermore, we obtain the consistency and asymptotic normality of the maximum likelihood estimator. Given the parameter estimates, our filter is capable of extracting the unobserved bubble process from observed data. We study finite-sample properties of our estimator through a Monte Carlo simulation study. Finally, we show that our model compares well with noncausal models in a financial application concerning the Bitcoin/US dollar exchange rate.","PeriodicalId":418701,"journal":{"name":"ERN: Time-Series Models (Single) (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Time-Varying Parameter Model for Local Explosions\",\"authors\":\"F. Blasques, S. J. Koopman, Marc Nientker\",\"doi\":\"10.2139/ssrn.3285850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Locally explosive behavior is observed in many economic and financial time series when bubbles are formed. We introduce a time-varying parameter model that is capable of describing this behavior in time series data. Our proposed model can be used to predict the emergence, existence and burst of bubbles. We adopt a flexible observation driven model specification that allows for different bubble shapes and behavior. We establish stationarity, ergodicity, and bounded moments of the data generated by our model. Furthermore, we obtain the consistency and asymptotic normality of the maximum likelihood estimator. Given the parameter estimates, our filter is capable of extracting the unobserved bubble process from observed data. We study finite-sample properties of our estimator through a Monte Carlo simulation study. Finally, we show that our model compares well with noncausal models in a financial application concerning the Bitcoin/US dollar exchange rate.\",\"PeriodicalId\":418701,\"journal\":{\"name\":\"ERN: Time-Series Models (Single) (Topic)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Time-Series Models (Single) (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3285850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Time-Series Models (Single) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3285850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

当泡沫形成时,在许多经济和金融时间序列中观察到局部爆炸行为。我们引入了一个时变参数模型,能够在时间序列数据中描述这种行为。我们提出的模型可以用来预测泡沫的出现、存在和破裂。我们采用灵活的观察驱动模型规范,允许不同的气泡形状和行为。我们建立了模型生成的数据的平稳性、遍历性和有界矩。进一步,我们得到了极大似然估计量的相合性和渐近正态性。给定参数估计,我们的滤波器能够从观测数据中提取未观测到的气泡过程。我们通过蒙特卡罗模拟研究了估计器的有限样本性质。最后,我们表明,在比特币/美元汇率的金融应用中,我们的模型与非因果模型相比效果很好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Time-Varying Parameter Model for Local Explosions
Locally explosive behavior is observed in many economic and financial time series when bubbles are formed. We introduce a time-varying parameter model that is capable of describing this behavior in time series data. Our proposed model can be used to predict the emergence, existence and burst of bubbles. We adopt a flexible observation driven model specification that allows for different bubble shapes and behavior. We establish stationarity, ergodicity, and bounded moments of the data generated by our model. Furthermore, we obtain the consistency and asymptotic normality of the maximum likelihood estimator. Given the parameter estimates, our filter is capable of extracting the unobserved bubble process from observed data. We study finite-sample properties of our estimator through a Monte Carlo simulation study. Finally, we show that our model compares well with noncausal models in a financial application concerning the Bitcoin/US dollar exchange rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信