增强的基于gpu的分布式广度优先搜索

M. Bernaschi, Giancarlo Carbone, Enrico Mastrostefano, M. Bisson, M. Fatica
{"title":"增强的基于gpu的分布式广度优先搜索","authors":"M. Bernaschi, Giancarlo Carbone, Enrico Mastrostefano, M. Bisson, M. Fatica","doi":"10.1145/2742854.2742887","DOIUrl":null,"url":null,"abstract":"There is growing interest in studying large scale graphs having millions of vertices and billions of edges, up to the point that a specific benchmark, called Graph500, has been defined to measure the performance of graph algorithms on modern computing architectures. At first glance, Graphics Processing Units (GPUs) are not an ideal platform for the execution of graph algorithms that are characterized by low arithmetic intensity and irregular memory access patterns. For studying really large graphs, multiple GPUs are required to overcome the memory size limitations of a single GPU. In the present paper, we propose several techniques to minimize the communication among GPUs.","PeriodicalId":417279,"journal":{"name":"Proceedings of the 12th ACM International Conference on Computing Frontiers","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Enhanced GPU-based distributed breadth first search\",\"authors\":\"M. Bernaschi, Giancarlo Carbone, Enrico Mastrostefano, M. Bisson, M. Fatica\",\"doi\":\"10.1145/2742854.2742887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is growing interest in studying large scale graphs having millions of vertices and billions of edges, up to the point that a specific benchmark, called Graph500, has been defined to measure the performance of graph algorithms on modern computing architectures. At first glance, Graphics Processing Units (GPUs) are not an ideal platform for the execution of graph algorithms that are characterized by low arithmetic intensity and irregular memory access patterns. For studying really large graphs, multiple GPUs are required to overcome the memory size limitations of a single GPU. In the present paper, we propose several techniques to minimize the communication among GPUs.\",\"PeriodicalId\":417279,\"journal\":{\"name\":\"Proceedings of the 12th ACM International Conference on Computing Frontiers\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2742854.2742887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2742854.2742887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

人们对研究具有数百万个顶点和数十亿条边的大规模图越来越感兴趣,甚至已经定义了一个名为Graph500的特定基准来衡量图算法在现代计算架构上的性能。乍一看,图形处理单元(gpu)并不是执行图形算法的理想平台,因为图形算法的特点是低算术强度和不规则的内存访问模式。对于研究非常大的图形,需要多个GPU来克服单个GPU的内存大小限制。在本文中,我们提出了几种技术来减少gpu之间的通信。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced GPU-based distributed breadth first search
There is growing interest in studying large scale graphs having millions of vertices and billions of edges, up to the point that a specific benchmark, called Graph500, has been defined to measure the performance of graph algorithms on modern computing architectures. At first glance, Graphics Processing Units (GPUs) are not an ideal platform for the execution of graph algorithms that are characterized by low arithmetic intensity and irregular memory access patterns. For studying really large graphs, multiple GPUs are required to overcome the memory size limitations of a single GPU. In the present paper, we propose several techniques to minimize the communication among GPUs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信