脑机接口应用中实时尖峰排序的vlsi友好算法

F. Abu-Nimeh, M. Aghagolzadeh, K. Oweiss
{"title":"脑机接口应用中实时尖峰排序的vlsi友好算法","authors":"F. Abu-Nimeh, M. Aghagolzadeh, K. Oweiss","doi":"10.1109/BIOCAS.2008.4696925","DOIUrl":null,"url":null,"abstract":"Recent research in brain machine interface (BMI) has shown that cortical implants can record and wirelessly transmit neural activity to external workstations for further processing, spike sorting, and decoding. In order to reduce complexity, bandwidth, and power consumption of such systems we introduce a miniaturized real-time spike sorting VLSI architecture that is to very low signal-to-noise ratios (SNR). This completely eliminates any external spike sorting dependencies, thus, bringing the entire system one step closer to be all integrated and fully implanted. The algorithm used in this architecture exploits three features to achieve better classification and real-time sorting: the spatial neuronal distribution across electrodes, the temporal and spectral information in the spike waveforms from individual neurons, and hardware limitations imposed by the size of the implant.","PeriodicalId":415200,"journal":{"name":"2008 IEEE Biomedical Circuits and Systems Conference","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"VLSI-friendly algorithm for real-time spike sorting in Brain Machine Interface applications\",\"authors\":\"F. Abu-Nimeh, M. Aghagolzadeh, K. Oweiss\",\"doi\":\"10.1109/BIOCAS.2008.4696925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research in brain machine interface (BMI) has shown that cortical implants can record and wirelessly transmit neural activity to external workstations for further processing, spike sorting, and decoding. In order to reduce complexity, bandwidth, and power consumption of such systems we introduce a miniaturized real-time spike sorting VLSI architecture that is to very low signal-to-noise ratios (SNR). This completely eliminates any external spike sorting dependencies, thus, bringing the entire system one step closer to be all integrated and fully implanted. The algorithm used in this architecture exploits three features to achieve better classification and real-time sorting: the spatial neuronal distribution across electrodes, the temporal and spectral information in the spike waveforms from individual neurons, and hardware limitations imposed by the size of the implant.\",\"PeriodicalId\":415200,\"journal\":{\"name\":\"2008 IEEE Biomedical Circuits and Systems Conference\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Biomedical Circuits and Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2008.4696925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2008.4696925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

最近对脑机接口(BMI)的研究表明,皮质植入物可以记录并无线传输神经活动到外部工作站,以进行进一步的处理、脉冲分类和解码。为了降低此类系统的复杂性、带宽和功耗,我们引入了一种具有非常低信噪比(SNR)的小型化实时尖峰排序VLSI架构。这完全消除了任何外部尖峰排序依赖,从而使整个系统更接近于全部集成和完全植入。该架构中使用的算法利用三个特征来实现更好的分类和实时排序:电极上神经元的空间分布,单个神经元的尖峰波形中的时间和频谱信息,以及植入物大小所施加的硬件限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VLSI-friendly algorithm for real-time spike sorting in Brain Machine Interface applications
Recent research in brain machine interface (BMI) has shown that cortical implants can record and wirelessly transmit neural activity to external workstations for further processing, spike sorting, and decoding. In order to reduce complexity, bandwidth, and power consumption of such systems we introduce a miniaturized real-time spike sorting VLSI architecture that is to very low signal-to-noise ratios (SNR). This completely eliminates any external spike sorting dependencies, thus, bringing the entire system one step closer to be all integrated and fully implanted. The algorithm used in this architecture exploits three features to achieve better classification and real-time sorting: the spatial neuronal distribution across electrodes, the temporal and spectral information in the spike waveforms from individual neurons, and hardware limitations imposed by the size of the implant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信