高效中间线圈无线电力传输系统的分析与设计

SangCheol Moon, Bong-chul Kim, Shin-Young Cho, G. Moon
{"title":"高效中间线圈无线电力传输系统的分析与设计","authors":"SangCheol Moon, Bong-chul Kim, Shin-Young Cho, G. Moon","doi":"10.1109/ECCE-ASIA.2013.6579235","DOIUrl":null,"url":null,"abstract":"This paper presents a theoretical analysis, an optimal design method and experimental results for a wireless power transfer (WPT) system with an intermediate coil. The analytical expression of the DC voltage transfer function is presented and discussed. In a two coil WPT system, which has low coupling coefficient, the intermediate coil boosts the self-inductance and magnetizing inductance of the primary side at around the resonance frequency of the intermediate coil, so that the coupling coefficient is compensated. The coupling coefficient makes the system efficiency increase and induces bi-furcation phenomenon. From the analysis, this paper proposes an optimal design method using the second resonance frequency operation with the bi-furcation phenomenon and presents design procedure for high efficiency. A prototype of the WPT system with the intermediate coil is implemented and experimented to verify the validity of the analysis and the proposed design method. The prototype operates at 100 kHz switching frequency and has an air gap between primary and secondary side of 200mm. An overall system efficiency of 95.57% has been achieved at 6.6kW of output power.","PeriodicalId":301487,"journal":{"name":"2013 IEEE ECCE Asia Downunder","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"144","resultStr":"{\"title\":\"Analysis and design of wireless power transfer system with an intermediate coil for high efficiency\",\"authors\":\"SangCheol Moon, Bong-chul Kim, Shin-Young Cho, G. Moon\",\"doi\":\"10.1109/ECCE-ASIA.2013.6579235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a theoretical analysis, an optimal design method and experimental results for a wireless power transfer (WPT) system with an intermediate coil. The analytical expression of the DC voltage transfer function is presented and discussed. In a two coil WPT system, which has low coupling coefficient, the intermediate coil boosts the self-inductance and magnetizing inductance of the primary side at around the resonance frequency of the intermediate coil, so that the coupling coefficient is compensated. The coupling coefficient makes the system efficiency increase and induces bi-furcation phenomenon. From the analysis, this paper proposes an optimal design method using the second resonance frequency operation with the bi-furcation phenomenon and presents design procedure for high efficiency. A prototype of the WPT system with the intermediate coil is implemented and experimented to verify the validity of the analysis and the proposed design method. The prototype operates at 100 kHz switching frequency and has an air gap between primary and secondary side of 200mm. An overall system efficiency of 95.57% has been achieved at 6.6kW of output power.\",\"PeriodicalId\":301487,\"journal\":{\"name\":\"2013 IEEE ECCE Asia Downunder\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"144\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE ECCE Asia Downunder\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCE-ASIA.2013.6579235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE ECCE Asia Downunder","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE-ASIA.2013.6579235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 144

摘要

本文介绍了一种带中间线圈的无线电力传输系统的理论分析、优化设计方法和实验结果。给出并讨论了直流电压传递函数的解析表达式。在耦合系数较低的双线圈WPT系统中,中间线圈在中间线圈谐振频率附近增大一次侧的自感和磁化感,使耦合系数得到补偿。耦合系数使系统效率提高,并引起双分岔现象。在此基础上,提出了一种利用二次共振频率运行的双分岔优化设计方法,并给出了高效率的设计步骤。设计了一个带中间线圈的WPT系统样机,并进行了实验,验证了分析和设计方法的有效性。原型机在100 kHz开关频率下工作,主侧和副侧之间的气隙为200毫米。在6.6kW输出功率下,系统整体效率达到95.57%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis and design of wireless power transfer system with an intermediate coil for high efficiency
This paper presents a theoretical analysis, an optimal design method and experimental results for a wireless power transfer (WPT) system with an intermediate coil. The analytical expression of the DC voltage transfer function is presented and discussed. In a two coil WPT system, which has low coupling coefficient, the intermediate coil boosts the self-inductance and magnetizing inductance of the primary side at around the resonance frequency of the intermediate coil, so that the coupling coefficient is compensated. The coupling coefficient makes the system efficiency increase and induces bi-furcation phenomenon. From the analysis, this paper proposes an optimal design method using the second resonance frequency operation with the bi-furcation phenomenon and presents design procedure for high efficiency. A prototype of the WPT system with the intermediate coil is implemented and experimented to verify the validity of the analysis and the proposed design method. The prototype operates at 100 kHz switching frequency and has an air gap between primary and secondary side of 200mm. An overall system efficiency of 95.57% has been achieved at 6.6kW of output power.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信