人脸识别采用模糊-高斯神经网络

V. Neagoe, I. Iatan
{"title":"人脸识别采用模糊-高斯神经网络","authors":"V. Neagoe, I. Iatan","doi":"10.1109/COGINF.2002.1039318","DOIUrl":null,"url":null,"abstract":"We present a face recognition approach using a new version of Chen and Teng's (1998) fuzzy neural network, which we have modified from an identifier into a neurofuzzy classifier called fuzzy-Gaussian neural network (FGNN). We have deduced modified equations for training the FGNN. Our presented face recognition cascade has two stages: (a) feature extraction using either principal component analysis (PCA) or the discrete cosine transform (DCT); and (b) pattern classification using the FGNN. We have performed software implementation of the algorithm and experimented the face recognition task for a database of 100 images (10 classes). The recognition score has been 100% (for the test lot) for almost all the considered variants of feature extraction. We have also compared the performances of the FGNN with those obtained using a classical multilayer fuzzy perceptron (FP). We can deduce a significant advantage of the proposed FGNN over FP.","PeriodicalId":250129,"journal":{"name":"Proceedings First IEEE International Conference on Cognitive Informatics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Face recognition using a fuzzy-Gaussian neural network\",\"authors\":\"V. Neagoe, I. Iatan\",\"doi\":\"10.1109/COGINF.2002.1039318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a face recognition approach using a new version of Chen and Teng's (1998) fuzzy neural network, which we have modified from an identifier into a neurofuzzy classifier called fuzzy-Gaussian neural network (FGNN). We have deduced modified equations for training the FGNN. Our presented face recognition cascade has two stages: (a) feature extraction using either principal component analysis (PCA) or the discrete cosine transform (DCT); and (b) pattern classification using the FGNN. We have performed software implementation of the algorithm and experimented the face recognition task for a database of 100 images (10 classes). The recognition score has been 100% (for the test lot) for almost all the considered variants of feature extraction. We have also compared the performances of the FGNN with those obtained using a classical multilayer fuzzy perceptron (FP). We can deduce a significant advantage of the proposed FGNN over FP.\",\"PeriodicalId\":250129,\"journal\":{\"name\":\"Proceedings First IEEE International Conference on Cognitive Informatics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings First IEEE International Conference on Cognitive Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COGINF.2002.1039318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings First IEEE International Conference on Cognitive Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COGINF.2002.1039318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们提出了一种人脸识别方法,使用Chen和Teng(1998)模糊神经网络的新版本,我们将其从标识符修改为称为模糊高斯神经网络(FGNN)的神经模糊分类器。我们已经推导出用于训练FGNN的修正方程。我们提出的人脸识别级联有两个阶段:(a)使用主成分分析(PCA)或离散余弦变换(DCT)进行特征提取;(b)使用FGNN进行模式分类。我们对该算法进行了软件实现,并对100张图像(10类)的数据库进行了人脸识别任务实验。对于几乎所有考虑的特征提取变体,识别分数都是100%(对于测试批次)。我们还比较了FGNN与经典多层模糊感知器(FP)的性能。我们可以推断出所提出的FGNN相对于FP的显著优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face recognition using a fuzzy-Gaussian neural network
We present a face recognition approach using a new version of Chen and Teng's (1998) fuzzy neural network, which we have modified from an identifier into a neurofuzzy classifier called fuzzy-Gaussian neural network (FGNN). We have deduced modified equations for training the FGNN. Our presented face recognition cascade has two stages: (a) feature extraction using either principal component analysis (PCA) or the discrete cosine transform (DCT); and (b) pattern classification using the FGNN. We have performed software implementation of the algorithm and experimented the face recognition task for a database of 100 images (10 classes). The recognition score has been 100% (for the test lot) for almost all the considered variants of feature extraction. We have also compared the performances of the FGNN with those obtained using a classical multilayer fuzzy perceptron (FP). We can deduce a significant advantage of the proposed FGNN over FP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信