让我加入你们!社会感知机器人的实时f形识别

Hrishav Bakul Barua, Pradip Pramanick, Chayan Sarkar, Theint Haythi Mg
{"title":"让我加入你们!社会感知机器人的实时f形识别","authors":"Hrishav Bakul Barua, Pradip Pramanick, Chayan Sarkar, Theint Haythi Mg","doi":"10.1109/RO-MAN47096.2020.9223469","DOIUrl":null,"url":null,"abstract":"This paper presents a novel architecture to detect social groups in real-time from a continuous image stream of an ego-vision camera. F-formation defines social orientations in space where two or more person tends to communicate in a social place. Thus, essentially, we detect F-formations in social gatherings such as meetings, discussions, etc. and predict the robot’s approach angle if it wants to join the social group. Additionally, we also detect outliers, i.e., the persons who are not part of the group under consideration. Our proposed pipeline consists of – a) a skeletal key points estimator (a total of 17) for the detected human in the scene, b) a learning model (using a feature vector based on the skeletal points) using CRF to detect groups of people and outlier person in a scene, and c) a separate learning model using a multi-class Support Vector Machine (SVM) to predict the exact F-formation of the group of people in the current scene and the angle of approach for the viewing robot. The system is evaluated using two data-sets. The results show that the group and outlier detection in a scene using our method establishes an accuracy of 91%. We have made rigorous comparisons of our systems with a state-of-the-art F-formation detection system and found that it outperforms the state-of-the-art by 29% for formation detection and 55% for combined detection of the formation and approach angle.","PeriodicalId":383722,"journal":{"name":"2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Let me join you! Real-time F-formation recognition by a socially aware robot\",\"authors\":\"Hrishav Bakul Barua, Pradip Pramanick, Chayan Sarkar, Theint Haythi Mg\",\"doi\":\"10.1109/RO-MAN47096.2020.9223469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel architecture to detect social groups in real-time from a continuous image stream of an ego-vision camera. F-formation defines social orientations in space where two or more person tends to communicate in a social place. Thus, essentially, we detect F-formations in social gatherings such as meetings, discussions, etc. and predict the robot’s approach angle if it wants to join the social group. Additionally, we also detect outliers, i.e., the persons who are not part of the group under consideration. Our proposed pipeline consists of – a) a skeletal key points estimator (a total of 17) for the detected human in the scene, b) a learning model (using a feature vector based on the skeletal points) using CRF to detect groups of people and outlier person in a scene, and c) a separate learning model using a multi-class Support Vector Machine (SVM) to predict the exact F-formation of the group of people in the current scene and the angle of approach for the viewing robot. The system is evaluated using two data-sets. The results show that the group and outlier detection in a scene using our method establishes an accuracy of 91%. We have made rigorous comparisons of our systems with a state-of-the-art F-formation detection system and found that it outperforms the state-of-the-art by 29% for formation detection and 55% for combined detection of the formation and approach angle.\",\"PeriodicalId\":383722,\"journal\":{\"name\":\"2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RO-MAN47096.2020.9223469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RO-MAN47096.2020.9223469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种从自我视觉相机的连续图像流中实时检测社会群体的新架构。F-formation定义了两个或更多的人倾向于在社交场所进行交流的空间中的社交方向。因此,从本质上讲,我们在会议、讨论等社交聚会中检测f形,并预测机器人想要加入社交群体时的接近角度。此外,我们还检测异常值,即不属于所考虑的群体的人。我们建议的管道由骨骼要点- a)的估计量(共17)在现场,发现人类b)学习模型(使用一个特征向量基于骨架点)使用CRF检测群体和一个场景的例外人,和c)一个单独的学习模型使用多层次支持向量机(SVM)预测的准确F-formation群人在当前场景和方法的角度观看机器人。系统使用两个数据集进行评估。结果表明,使用该方法对场景中的组点和离群点进行检测,准确率达到91%。我们已经将我们的系统与最先进的f-地层探测系统进行了严格的比较,发现它在地层探测方面比最先进的系统好29%,在地层和接近角的综合探测方面比最先进的系统好55%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Let me join you! Real-time F-formation recognition by a socially aware robot
This paper presents a novel architecture to detect social groups in real-time from a continuous image stream of an ego-vision camera. F-formation defines social orientations in space where two or more person tends to communicate in a social place. Thus, essentially, we detect F-formations in social gatherings such as meetings, discussions, etc. and predict the robot’s approach angle if it wants to join the social group. Additionally, we also detect outliers, i.e., the persons who are not part of the group under consideration. Our proposed pipeline consists of – a) a skeletal key points estimator (a total of 17) for the detected human in the scene, b) a learning model (using a feature vector based on the skeletal points) using CRF to detect groups of people and outlier person in a scene, and c) a separate learning model using a multi-class Support Vector Machine (SVM) to predict the exact F-formation of the group of people in the current scene and the angle of approach for the viewing robot. The system is evaluated using two data-sets. The results show that the group and outlier detection in a scene using our method establishes an accuracy of 91%. We have made rigorous comparisons of our systems with a state-of-the-art F-formation detection system and found that it outperforms the state-of-the-art by 29% for formation detection and 55% for combined detection of the formation and approach angle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信